Total of 63 peer-reviewed papers and 4 book chapters.

Peer-reviewed papers

2020

  1. Crow, S. E., Wells, J. M., Sierra, C. A., Youkhana, A. H., Ogoshi, R. M., Richardson, D., Tallamy Glazer, C., Meki, M. N., & Kiniry, J. R. (2020). Carbon flow through energycane agroecosystems established post-intensive agriculture. GCB Bioenergy, 12(10), 806–817. https://doi.org/10.1111/gcbb.12713
  2. Linscheid, N., Estupinan-Suarez, L. M., Brenning, A., Carvalhais, N., Cremer, F., Gans, F., Rammig, A., Reichstein, M., Sierra, C. A., & Mahecha, M. D. (2020). Towards a global understanding of vegetation–climate dynamics at multiple timescales. Biogeosciences, 17(4), 945–962. https://doi.org/10.5194/bg-17-945-2020
  3. Schulze, E. D., Sierra, C. A., Egenolf, V., Woerdehoff, R., Irslinger, R., Baldamus, C., Stupak, I., & Spellmann, H. (2020). The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy, 12(3), 186–197. https://doi.org/10.1111/gcbb.12672
  4. Kattge, J., Bönisch, G., Dı́az Sandra, Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar C, C., Aleixo, I., Ali, H., … Wirth, C. (2020). TRY plant trait database –enhanced coverage and open access. Global Change Biology, 26(1), 119–188. https://doi.org/doi:10.1111/gcb.14904
  5. Metzler, H., Zhu, Q., Riley, W., Hoyt, A., Müller, M., & Sierra, C. A. (2020). Mathematical Reconstruction of Land Carbon Models From Their Numerical Output: Computing Soil Radiocarbon From C Dynamics. Journal of Advances in Modeling Earth Systems, 12(1), e2019MS001776. https://doi.org/10.1029/2019MS001776
  6. Lawrence, C. R., Beem-Miller, J., Hoyt, A. M., Monroe, G., Sierra, C. A., Stoner, S., Heckman, K., Blankinship, J. C., Crow, S. E., McNicol, G., Trumbore, S., Levine, P. A., Vindušková, O., Todd-Brown, K., Rasmussen, C., Hicks Pries, C. E., Schädel, C., McFarlane, K., Doetterl, S., … Wagai, R. (2020). An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data, 12(1), 61–76. https://doi.org/10.5194/essd-12-61-2020
  7. Jiménez, E. M., Peñuela-Mora Marı́a Cristina, Moreno, F., & Sierra, C. A. (2020). Spatial and temporal variation of forest net primary productivity components on contrasting soils in northwestern Amazon. Ecosphere, 11(8), e03233. https://doi.org/10.1002/ecs2.3233
  8. Ceballos-Núñez, V., Müller, M., & Sierra, C. A. (2020). Towards better representations of carbon allocation in vegetation: a conceptual framework and mathematical tool. Theoretical Ecology, 13(3), 317–332. https://doi.org/10.1007/s12080-020-00455-w
  9. Schädel, C., Beem-Miller, J., Aziz Rad, M., Crow, S. E., Hicks Pries, C. E., Ernakovich, J., Hoyt, A. M., Plante, A., Stoner, S., Treat, C. C., & Sierra, C. A. (2020). Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data, 12(3), 1511–1524. https://doi.org/10.5194/essd-12-1511-2020
  10. Sierra, C. A., Crow, S. E., Heimann, M., Metzler, H., & Schulze, E.-D. (2020). The Climate Benefit of Carbon Sequestration. Biogeosciences Discussions, 2020, in review. https://doi.org/10.5194/bg-2020-198
  11. Herrera-Ramı́rez David, Muhr, J., Hartmann, H., Römermann, C., Trumbore, S., & Sierra, C. A. (2020). Probability distributions of nonstructural carbon ages and transit times provide insights into carbon allocation dynamics of mature trees. New Phytologist, 226(5), 1299–1311. https://doi.org/10.1111/nph.16461

2018

  1. Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/https://doi.org/10.1016/j.rsma.2017.12.011
  2. Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., Blankinship, J. C., Crow, S. E., Druhan, J. L., Hicks Pries, C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A., & Wagai, R. (2018). Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137(3), 297–306. https://doi.org/10.1007/s10533-018-0424-3
  3. McDowell, N., Allen, C. D., Anderson-Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., Duque, A., Espirito-Santo, F., Fisher, R., Fontes, C. G., Galbraith, D., Goodsman, D., Grossiord, C., Hartmann, H., Holm, J., Johnson, D. J., … Xu, X. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219(3), 851–869. https://doi.org/10.1111/nph.15027
  4. Metzler, H., Müller, M., & Sierra, C. A. (2018). Transit-time and age distributions for nonlinear time-dependent compartmental systems. Proceedings of the National Academy of Sciences, 115(6), 1150–1155. https://doi.org/10.1073/pnas.1705296115
  5. Metzler, H., & Sierra, C. A. (2018). Linear Autonomous Compartmental Models as Continuous-Time Markov Chains: Transit-Time and Age Distributions. Mathematical Geosciences, 50(1), 1–34. https://doi.org/10.1007/s11004-017-9690-1
  6. Sierra, C. A. (2018). Forecasting Atmospheric Radiocarbon Decline to Pre-Bomb Values. Radiocarbon, 60(4), 1055–1066. https://doi.org/10.1017/RDC.2018.33
  7. Sierra, C. A., Hoyt, A. M., He, Y., & Trumbore, S. E. (2018). Soil Organic Matter Persistence as a Stochastic Process: Age and Transit Time Distributions of Carbon in Soils. Global Biogeochemical Cycles, 32(10), 1574–1588. https://doi.org/10.1029/2018GB005950
  8. Salazar, A., Sanchez, A., Villegas, J. C., Salazar, J. F., Ruiz Carrascal, D., Sitch, S., Restrepo Juan Darı́o, Poveda, G., Feeley, K. J., Mercado, L. M., Arias, P. A., Sierra, C. A., Uribe, M. del R., Rendón, A. M., Pérez, J. C., Murray Tortarolo, G., Mercado-Bettin, D., Posada, J. A., Zhuang, Q., & Dukes, J. S. (2018). The ecology of peace: preparing Colombia for new political and planetary climates. Frontiers in Ecology and the Environment, 16(9), 525–531. https://doi.org/10.1002/fee.1950
  9. Völkel, H., Bolivar, J. M., & Sierra, C. A. (2018). Stabilization of carbon in mineral soils from mangroves of the Sinú river delta, Colombia. Wetlands Ecology and Management, 26(5), 931–942. https://doi.org/10.1007/s11273-018-9621-z
  10. Sierra, C. A., Ceballos-Núñez, V., Metzler, H., & Müller, M. (2018). Representing and Understanding the Carbon Cycle Using the Theory of Compartmental Dynamical Systems. Journal of Advances in Modeling Earth Systems, 10(8), 1729–1734. https://doi.org/10.1029/2018MS001360
  11. Blankinship, J. C., Berhe, A. A., Crow, S. E., Druhan, J. L., Heckman, K. A., Keiluweit, M., Lawrence, C. R., Marı́n-Spiotta Erika, Plante, A. F., Rasmussen, C., Schädel, C., Schimel, J. P., Sierra, C. A., Thompson, A., Wagai, R., & Wieder, W. R. (2018). Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry, 140(1), 1–13. https://doi.org/10.1007/s10533-018-0478-2
  12. Boone, L., linden, V. V., Roldán-Ruiz, I., Sierra, C. A., Vandecasteele, B., Sleutel, S., Meester, S. D., Muylle, H., & Dewulf, J. (2018). Introduction of a natural resource balance indicator to assess soil organic carbon management: Agricultural Biomass Productivity Benefit. Journal of Environmental Management, 224, 202–214. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.07.013
  13. Crow, S. E., & Sierra, C. A. (2018). Dynamic, Intermediate Soil Carbon Pools May Drive Future Responsiveness to Environmental Change. Journal of Environmental Quality, 47(4), 607–616. https://doi.org/10.2134/jeq2017.07.0280
  14. Spohn, M., & Sierra, C. A. (2018). How long do elements cycle in terrestrial ecosystems? Biogeochemistry, 139(1), 69–83. https://doi.org/10.1007/s10533-018-0452-z
  15. Crow, S. E., Deem, L. M., Sierra, C. A., & Wells, J. M. (2018). Belowground Carbon Dynamics in Tropical Perennial C4 Grass Agroecosystems. Frontiers in Environmental Science, 6, 18. https://doi.org/10.3389/fenvs.2018.00018
  16. Ceballos-Núñez, V., Richardson, A. D., & Sierra, C. A. (2018). Ages and transit times as important diagnostics of model performance for predicting carbon dynamics in terrestrial vegetation models. Biogeosciences, 15(5), 1607–1625. https://doi.org/10.5194/bg-15-1607-2018

2017

  1. Müller, M., & Sierra, C. A. (2017). Application of input to state stability to reservoir models. Theoretical Ecology, 10, 451–475. https://doi.org/10.1007/s12080-017-0342-3
  2. Sierra, C. A., Mahecha, M., Poveda, G., Álvarez-Dávila, E., Gutierrez-Velez Vı́ctor H., Reu, B., Feilhauer, H., Anáya, J., Armenteras, D., Benavides, A. M., Buendia, C., Álvaro Duque, Estupiñan-Suarez, L. M., González, C., Gonzalez-Caro, S., Jimenez, R., Kraemer, G., Londoño, M. C., Orrego, S. A., … Skowronek, S. (2017). Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science & Policy, 76, 40–49. https://doi.org/https://doi.org/10.1016/j.envsci.2017.06.011
  3. Sierra, C. A., Müller, M., Metzler, H., Manzoni, S., & Trumbore, S. E. (2017). The muddle of ages, turnover, transit, and residence times in the carbon cycle. Global Change Biology, 23(5), 1763–1773. https://doi.org/10.1111/gcb.13556
  4. Sierra, C. A., Malghani, S., & Loescher, H. W. (2017). Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences, 14(3), 703–710. https://doi.org/10.5194/bg-14-703-2017

2016

  1. Wiesmeier, M., Poeplau, C., Sierra, C. A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., von Lützow, M., & Kögel-Knabner, I. (2016). Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Scientific Reports, 6, 32525 EP. https://doi.org/10.1038/srep32525
  2. Luo, Y., Ahlström, A., Allison, S. D., Batjes, N. H., Brovkin, V., Carvalhais, N., Chappell, A., Ciais, P., Davidson, E. A., Finzi, A., Georgiou, K., Guenet, B., Hararuk, O., Harden, J. W., He, Y., Hopkins, F., Jiang, L., Koven, C., Jackson, R. B., … Zhou, T. (2016). Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 30(1), 40–56. https://doi.org/10.1002/2015GB005239

2015

  1. Trumbore, S., Czimczik, C. I., Sierra, C. A., Muhr, J., & Xu, X. (2015). Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks. Tree Physiology, 35(11), 1206–1222. https://doi.org/10.1093/treephys/tpv097
  2. Sierra, C. A., & Müller, M. (2015). A general mathematical framework for representing soil organic matter dynamics. Ecological Monographs, 85, 505–524. https://doi.org/10.1890/15-0361.1
  3. Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vazquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6. https://doi.org/10.1038/ncomms7707
  4. Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. (2015). Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems, 7(1), 335–356. https://doi.org/10.1002/2014MS000358
  5. Crow, S. E., Reeves, M., Schubert, O. S., & Sierra, C. A. (2015). Optimization of method to quantify soil organic matter dynamics and carbon sequestration potential in volcanic ash soils. Biogeochemistry, 123(1-2), 27–47. https://doi.org/10.1007/s10533-014-0051-6
  6. Sierra, C. A., Malghani, S., & Müller, M. (2015). Model structure and parameter identification of soil organic matter models. Soil Biology and Biochemistry, 90, 197–203. https://doi.org/10.1016/j.soilbio.2015.08.012
  7. Lara, W., Bravo, F., & Sierra, C. A. (2015). measuRing: an R package to measure tree-ring widths from scanned images. Dendrochronologia, 34, 43–50. https://doi.org/10.1016/j.dendro.2015.04.002

2014

  1. Sierra, C. A., Müller, M., & Trumbore, S. E. (2014). Modeling radiocarbon dynamics in soils: SoilR version 1.1. Geoscientific Model Development, 7(5), 1919–1931. https://doi.org/10.5194/gmd-7-1919-2014
  2. Jiménez, E. M., Peñuela-Mora Marı́a Cristina, Sierra, C. A., Lloyd, J., Phillips, O. L., Moreno, F. H., Navarrete, D., Prieto, A., Rudas Agustı́n, Álvarez, E., Quesada, C. A., Grande-Ortı́z Maria Angeles, Garcı́a-Abril Antonio, & Patiño, S. (2014). Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests. Journal of Geophysical Research: Biogeosciences, 119(9), 1820–1830. https://doi.org/10.1002/2014JG002653
  3. del Valle, J., Guarı́n Juan, & Sierra, C. (2014). Unambiguous and Low-Cost Determination of Growth Rates and Ages of Tropical Trees and Palms. Radiocarbon, 56(1), 39–52. https://doi.org/10.2458/56.16486
  4. Guarı́n Juan R., del Valle, J. I., & Sierra, C. A. (2014). Establishment phase, spatial pattern, age, and demography of Oenocarpus bataua var. bataua can be a legacy of past loggings in the Colombian Andes. Forest Ecology and Management, 328(0), 282–291. https://doi.org/10.1016/j.foreco.2014.05.043

2013

  1. Wäldchen, J., Schulze, E.-D., Schöning, I., Schrumpf, M., & Sierra, C. (2013). The influence of changes in forest management over the past 200 years on present soil organic carbon stocks. Forest Ecology and Management, 289(0), 243–254. https://doi.org/10.1016/j.foreco.2012.10.014
  2. Schöning, I., Grüneberg, E., Sierra, C. A., Hessenmöller, D., Schrumpf, M., Weisser, W. W., & Schulze, E.-D. (2013). Causes of variation in mineral soil C content and turnover in differently managed beech dominated forests. Plant and Soil, 370(1-2), 625–639. https://doi.org/10.1007/s11104-013-1654-8
  3. Sierra, C. A., Jiménez, E. M., Reu, B., Peñuela, M. C., Thuille, A., & Quesada, C. A. (2013). Low vertical transfer rates of carbon inferred from radiocarbon analysis in an Amazon Podzol. Biogeosciences, 10(6), 3455–3464. https://doi.org/10.5194/bg-10-3455-2013

2012

  1. Sierra, C. A., Müller, M., & Trumbore, S. E. (2012). Models of soil organic matter decomposition: the SoilR package, version 1.0. Geosci. Model Dev., 5(4), 1045–1060. https://doi.org/10.5194/gmd-5-1045-2012
  2. Zapata-Cuartas, M., Sierra, C. A., & Alleman, L. (2012). Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. Forest Ecology and Management, 277(0), 173–179. https://doi.org/10.1016/j.foreco.2012.04.030
  3. Sierra, C. (2012). Temperature sensitivity of organic matter decomposition in the Arrhenius equation: some theoretical considerations. Biogeochemistry, 108(1), 1–15. https://doi.org/10.1007/s10533-011-9596-9
  4. Sierra, C., del Valle, J., & Restrepo, H. (2012). Total carbon accumulation in a tropical forest landscape. Carbon Balance and Management, 7(1), 12. https://doi.org/10.1186/1750-0680-7-12
  5. Krankina, O. N., Harmon, M. E., Schnekenburger, F., & Sierra, C. A. (2012). Carbon balance on federal forest lands of Western Oregon and Washington: The impact of the Northwest Forest Plan. Forest Ecology and Management, 286(0), 171–182. https://doi.org/10.1016/j.foreco.2012.08.028
  6. Sierra, C. A., Trumbore, S. E., Davidson, E. A., Frey, S. D., Savage, K. E., & Hopkins, F. M. (2012). Predicting decadal trends and transient responses of radiocarbon storage and fluxes in a temperate forest soil. Biogeosciences, 9(8), 3013–3028. https://doi.org/10.5194/bg-9-3013-2012

2011

  1. Cleveland, C. C., Townsend, A. R., Taylor, P., Alvarez-Clare, S., Bustamante, M. M. C., Chuyong, G., Dobrowski, S. Z., Grierson, P., Harms, K. E., Houlton, B. Z., Marklein, A., Parton, W., Porder, S., Reed, S. C., Sierra, C. A., Silver, W. L., Tanner, E. V. J., & Wieder, W. R. (2011). Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters, 14(9), 939–947. https://doi.org/10.1111/j.1461-0248.2011.01658.x
  2. Sierra, C. A., Harmon, M. E., Thomann, E., Perakis, S. S., & Loescher, H. W. (2011). Amplification and dampening of soil respiration by changes in temperature variability. Biogeosciences, 8(4), 951–961. https://doi.org/10.5194/bg-8-951-2011
  3. Sierra, C. A., Harmon, M. E., & Perakis, S. S. (2011). Decomposition of heterogeneous organic matter and its long-term stabilization in soils. Ecological Monographs, 81(4), 619–634. https://doi.org/10.1890/11-0811.1

2010

  1. Sierra, C. A., & Yepes, A. P. (2010). Development of Global Change Research in Developing Countries: Ecosystems and Global Change in the Context of the Neotropics; Medellı́n, Colombia, 19–20 May 2010. Eos, Transactions American Geophysical Union, 91(41), 373–374. https://doi.org/10.1029/2010EO410008

2009

  1. Sierra, C. A., Loescher, H. W., Harmon, M. E., Richardson, A. D., Hollinger, D. Y., & Perakis, S. S. (2009). Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate. Ecology, 90(10), 2711–2723. https://doi.org/10.1890/08-0073.1

2007

  1. Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E. D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J. M., Chambers, J., Ciais, P., … Janssens, I. A. (2007). CO_2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
  2. Sierra, C. A., del Valle, J. I., Orrego, S. A., Moreno, F. H., Harmon, M. E., Zapata, M., Colorado, G. J., Herrera, M. A., Lara, W., Restrepo, D. E., Berrouet, L. M., Loaiza, L. M., & Benjumea, J. F. (2007). Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. Forest Ecology and Management, 243(2-3), 299–309. https://doi.org/10.1016/j.foreco.2007.03.026
  3. Sierra, C. A., Harmon, M. E., Moreno, F. H., Orrego, S. A., & del Valle, J. I. (2007). Spatial and temporal variability of net ecosystem production in a tropical forest: testing the hypothesis of a significant carbon sink. Global Change Biology, 13(4), 838–853. https://doi.org/10.1111/j.1365-2486.2007.01336.x

2006

  1. Gutiérrez Vı́ctor Hugo, Zapata, M., Sierra, C., Laguado, W., & Santacruz Alı́. (2006). Maximizing the profitability of forestry projects under the Clean Development Mechanism using a forest management optimization model. Forest Ecology and Management, 226(1–3), 341–350. https://doi.org/http://dx.doi.org/10.1016/j.foreco.2006.02.002

2003

  1. Sierra, C. A., del Valle, J. I., & Orrego, S. A. (2003). Accounting for fine root mass sample losses in the washing process: a case study from a tropical montane forest of Colombia. Journal of Tropical Ecology, 19, 599–601. https://doi.org/10.1017/S0266467403003663

Book Chapters

  1. Giraldo, J. A., del Valle, J. I., Sierra, C. A., & Melo, O. (2020). Dendrochronological Potential of Trees from America’s Rainiest Region. In Pompa-Garcı́a Marı́n & J. J. Camarero (Eds.), Latin American Dendroecology: Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory (pp. 79–119). Springer International Publishing. https://doi.org/10.1007/978-3-030-36930-9_5
  2. Sierra, C. A. (2019). Approaches to Model Processes at the Ecosystem Level. In E.-D. Schulze, E. Beck, N. Buchmann, S. Clemens, K. Müller-Hohenstein, & M. Scherer-Lorenzen (Eds.), Plant Ecology (pp. 513–527). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_15
  3. Wells, J. M., Crow, S. E., Meki, M. N., Sierra, C. A., Carlson, K. M., Youkhana, A., Richardson, D., & Deem, L. (2017). Maximizing Soil Carbon Sequestration: Assessing Procedural Barriers to Carbon Management in Cultivated Tropical Perennial Grass Systems. In Y. Yun (Ed.), Recent Advances in Carbon Capture and Storage. InTech. https://doi.org/10.5772/66741
  4. Trumbore, S. E., Sierra, C. A., & Hicks Pries, C. E. (2016). Radiocarbon Nomenclature, Theory, Models, and Interpretation: Measuring Age, Determining Cycling Rates, and Tracing Source Pools. In A. G. E. Schuur, E. Druffel, & E. S. Trumbore (Eds.), Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques (pp. 45–82). Springer International Publishing. https://doi.org/10.1007/978-3-319-25643-6_3

PhD and Masther theses

  1. Metzler, H. (2020). Compartmental systems as Markov chains : age, transit time, and entropy (T. Oertel-Jäger, I. Pavlyukevich, & C. Sierra, Eds.) [PhD thesis, Friedrich-Schiller-Universiät Jena]. https://suche.thulb.uni-jena.de/Record/1726091651
  2. Ceballos-Núñez, V. (2018). Nonlinearities in Carbon Allocation and Vegetation Functioning Dissertation (pp. 124 p.) [PhD thesis, Friedrich-Schiller-Universiät Jena]. http://www.clib-jena.mpg.de/theses/bgc/BGC18006.pdf
  3. Völkel, H. (2016). Mineral-associated carbon in mangrove ecosystems in the Sinú river delta, Colombia (pp. VII, 74 S.) [Master's thesis, Friedrich-Schiller-Universiät Jena]. http://www.clib-jena.mpg.de/theses/bgc/BGC17001.pdf
  4. Jimenez-Rojas, E. M. (2013). Carbon allocation in north-western Amazon forests (Colombia) [PhD thesis, Escuela Técnica Superior de Ingenierı́a de Montes, Universidad Politécnica de Madrid]. http://oa.upm.es/22536/