Minz, J.; Kleidon, A.; Mbungu, N. T.: Estimating the technical wind energy potential of Kansas that incorporates the effect of regional wind resource depletion by wind turbines. Wind Energy Science 9 (11), S. 2147 - 2169 (2024)
Kleidon, A.; Lesch, H.: Zukünftige Energieversorgung in Deutschland: Kann Kernenergie zur Energiewende beitragen? Physik in unserer Zeit 55 (6), S. 286 - 293 (2024)
Kleidon, A.; Gozzi, C.; Buccianti, A.; Sauro Graziano, R.: Type of probability distribution reflects how close mixing dynamics in river chemistry are to thermodynamic equilibrium. Science of the Total Environment 941, 173409 (2024)
Notholt, J.; Schmithüsen, H.; Buschmann, M.; Kleidon, A.: Infrared radiative effects of increasing CO2 and CH4 on the atmosphere in Antarctica compared to the Arctic. Geophysical Research Letters 51 (2), e2023GL105600 (2024)
Ghausi, S. A.; Tian , Y.; Zehe, E.; Kleidon, A.: Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land. Proceedings of the National Academy of Sciences of the United States of America 120 (29), e2220400120 (2023)
Tian, Y.; Ghausi, S. A.; Zhang, Y.; Zhang, M.; Xie, D.; Cao, Y.; Mei, Y.; Wang, G.; Zhong, D.; Kleidon, A.: Radiation as the dominant cause of high-temperature extremes on the eastern Tibetan Plateau. Environmental Research Letters 18 (7), 074007 (2023)
Kleidon, A.: Windenergiepotenzial von Deutschland: Grenzen und Konsequenzen großräumiger Onshore-Windenergienutzung. Physik in unserer Zeit 54 (3), S. 142 - 148 (2023)
Kleidon, A.; Messori, G.; Roy, S. B.; Didenkulova, I.; Zeng, N.: Editorial: Global warming is due to an enhanced greenhouse effect, and anthropogenic heat emissions currently play a negligible role at the global scale. Earth System Dynamics 14 (1), S. 241 - 242 (2023)
Kleidon, A.: Sustaining the terrestrial biosphere in the Anthropocene: A thermodynamic earth system perspective. Ecology, Economy and Society – the INSEE Journal 6 (1), S. 53 - 80 (2023)
Panwar, A.; Kleidon, A.: Evaluating the response of diurnal variations in surface and air temperature to evaporative conditions across vegetation types in FLUXNET and ERA5. Journal of Climate 35 (19), S. 2701 - 2728 (2022)
Ghausi, S. A.; Ghosh, S.; Kleidon, A.: Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling. Hydrology and Earth System Sciences 26 (16), S. 4431 - 4446 (2022)
Extreme Niederschläge sollten bei wärmeren Temperaturen stärker werden. Messdaten aus den Tropen zeigen, dass die abkühlende Wirkung von Wolken diesen Zusammenhang verschleiert. Korrigiert man die Wolkeneffekte, wird klar dass steigende Temperaturen extreme Niederschläge verstärken.
Niederschläge im Amazonas-Regenwald lassen massenhaft natürliche Nanopartikel entstehen, die zur Bildung von Wolken und weiteren Regenfällen führen können
Der Klimawandel verändert die globalen Wasserkreisläufe. Dabei wird der Regen anders verteilt: In der Mittelmeerregion kommt es einerseits zu längeren und intensiveren Dürren und andererseits zu mehr und heftigerem Starkregen. Modelle mit höherer Auflösung sollen Wetterextreme regional und lokal ebenso präzise voraussagen wie die Auswirkungen unter anderem auf die Landwirtschaft.
Die Temperaturen an der Landoberfläche werden hauptsächlich durch die Erwärmung durch Sonnenlicht, aber auch durch Verdunstung und konvektive Wärmeübertragung in der Vertikalen bestimmt. In einer neuen Studie wurde die Rolle dieser beiden Prozesse mit Hilfe einer physikalischen Leistungsgrenze bestimmt.
Die Umsatzzeiten des Kohlenstoffs an Land bestimmen die Auswirkungen von Klima-veränderungen auf die Landoberfläche. Die Temperaturempfindlichkeit des Kohlen-stoffumsatzes ist daher von entscheidender Bedeutung. Unsere neue Studie belegt, dass die Feuchtebedingungen die Temperaturempfindlichkeit der Kohlenstoffumsatzzeiten stark verändern.
Eine neue Studie zeigt, dass bereits ein geringer Anstieg des atmosphärischen CO2 zu erkennbaren Auswirkungen auf die Funktionsweise von Ökosystemen führt. Anhand von Simulationen des am Max-Planck-Institut für Biogeochemie entwickelten Landoberflächenmodells hat ein internationales Team von Wissenschaftler*innen herausgefunden, dass ein erhöhter CO2-Gehalt zunächst Kenngrößen des Kohlenstoffkreislaufs wie die Produktivität der Vegetation und die Ausdehnung der Blattfläche beeinflusst.
Windturbinen brauchen beim massiven Ausbau Platz, um möglichst effizient zu sein. Generell kann Fotovoltaik deutlich mehr Strom erzeugen als Windkraft.
Wichtige Leistungen von Ökosystemen werden künftig zunehmend von der Wasserverfügbarkeit abhängen. Anhand aktueller Simulationen mit Klimamodellen fand ein internationales Forscherteam mehrere Regionen, in denen Wasser zunehmend die Ökosysteme limitiert. Darunter auch Zentraleuropa, der Amazonas und West-Russland.
Die Deutsche Forschungsgemeinschaft (DFG) hat die Förderung von drei Sonderforschungsbereichen (SFB) der Friedrich-Schiller-Universität Jena verlängert. Darunter ist auch der SFB AquaDiva, der in der dritten Förderperiode für die nächsten vier Jahre rund elf Millionen Euro erhält.
Wie effizient Pflanzen Wasser und Kohlendioxid für ihr Wachstum umsetzen, wird von der Verfügbarkeit von Stickstoff und Phosphor sowie deren Gleichgewicht im Ökosystem bestimmt. In einer neuen Studie analysierten Forscher des Max-Planck-Instituts für Biogeochemie in Jena und ihre spanischen Partner die Reaktionen von Pflanzen und deren Umgebung auf die Zugabe dieser Nährstoffe.
Dr. Sönke Zaehle ist seit dem 1. Mai 2020 neuer Direktor am Max-Planck-Instituts für Biogeochemie und übernimmt die Leitung der neuen Abteilung Biogeochemische Signale. Der Geoökologe untersucht, wie sich Landökosysteme und die Atmosphäre gegenseitig beeinflussen, und welche Rolle Nährstoffkreisläufe dabei spielen.
Die Offshore-Windenergie in der Nordsee spielt eine wichtige Rolle bei der europäischen Energiewende. Werden sich diese Windparks, da in den nächsten dreißig Jahren immer mehr davon geplant werden, allmählich der Grenze der tatsächlich vorhandenen Windenergie nähern?