Wengel, M.; Gleixner, G.: Preparative isolation and characterization of heavy metal complexes from acid mine drainage and surface wastewater. Acta Hydrochimica et Hydrobiologica 34 (6), S. 568 - 578 (2006)
Wengel, M.; Kothe, E.; Schmidt, C. M.; Heide, K.; Gleixner, G.: Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Science of the Total Environment 367 (1), S. 383 - 393 (2006)
Neff, J. C.; Harden, J. W.; Gleixner, G.: Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Canadian Journal of Forest Research 35 (9), S. 2178 - 2187 (2005)
Schmidt, M. W. I.; Gleixner, G.: Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acid. European Journal of Soil Science 56 (3), S. 407 - 416 (2005)
Schulze, W. X.; Gleixner, G.; Kaiser, K.; Guggenberger, G.; Mann, M.; Schulze, E.-D.: A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142 (3), S. 335 - 343 (2005)
Harden, J. W.; Neff, J. C.; Sandberg, D. V.; Turetsky, M. R.; Ottmar, R.; Gleixner, G.; Fries, T. L.; Manies, K. L.: Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Global Biogeochemical Cycles 18 (3), S. GB3014 (2004)
Rethemeyer, J.; Grootes, P. M.; Bruhn, F.; Andersen, N.; Nadeau, M. J.; Kramer, C.; Gleixner, G.: Age heterogeneity of soil organic matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223-224, S. 521 - 527 (2004)
Roscher, C.; Schumacher, J.; Baade, J.; Wilcke, W.; Gleixner, G.; Weisser, W. W.; Schmid, B.; Schulze, E.-D.: The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and Applied Ecology 5 (2), S. 107 - 121 (2004)
Sachse, D.; Radke, J.; Gaupp, R.; Schwark, L.; Lüniger, G.; Gleixner, G.: Reconstruction of palaeohydrological conditions in a lagoon during the 2nd Zechstein cycle through simultaneous use of δ D values of individual n-alkanes and δ 18O and δ 13C values of carbonates. International Journal of Earth Sciences 93 (4), S. 554 - 564 (2004)
Schmidt, M. W. I.; Gleixner, G.: Carbon and nitrogen isotope composition of bulk soils, particle-size fractions and organic material after treatment with hydrofluoric acid. European Journal of Soil Science 56 (3), S. 407 - 416 (2004)
Steinhof, A.; Adamiec, G.; Gleixner, G.; Van Klinken, G. J.; Wagner, T.: The new 14C analysis laboratory in Jena, Germany. Radiocarbon 46 (1), S. 51 - 58 (2004)
Santruckova, H.; Bird, M. I.; Kalaschnikov, Y. N.; Grund, M.; Elhottova, D.; Simek, M.; Grigoryev, S.; Gleixner, G.; Arneth, A.; Schulze, E.-D.et al.; Lloyd, J.: Microbial characteristics of soils on a latitudinal transect in Siberia. Global Change Biology 9 (7), S. 1106 - 1117 (2003)
Arneth, A.; Lloyd, J.; Santrucková, H.; Bird, M.; Grigoryev, S.; Kalaschnikov, Y. N.; Gleixner, G.; Schulze, E.-D.: Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeochemical Cycles 16 (1), S. 5-1 - 5-13 (2002)
Bird, M. I.; Santrùcková, H.; Arneth, A.; Grigoriev, S.; Gleixner, G.; Kalaschnikov, Y. N.; Lloyd, J.; Schulze, E.-D.: Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus, Series B - Chemical and Physical Meteorology 54 (5), S. 631 - 641 (2002)
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
Microorganisms in aquifers deep below the earth’s surface produce similar amounts of biomass as those in some marine waters. This is the finding of researchers led by the Friedrich Schiller University Jena and the German Centre for Integrative Biodiversity Research (iDiv). The study has been published in Nature Geoscience.
You can't see them with the naked eye, but our forest ground is littered with microorganisms. They decompose falling leaves, thereby improving soil quality and counteracting climate change. But how do these single-celled organisms coordinate their tasks? An international research team has been looking into this little-understood process. The results of the study were recently published in Scientific Reports.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Forschende untersuchen in der Biosphere 2 mit bislang größtem Markierungsexperiment, wie H2O, CO2 und VOCs durch dürregestresste Pflanzen und Böden fließen. Die Studienergebnisse können helfen, Wälder widerstandsfähiger zu machen und Klimamodelle zu präzisieren.
Wie genau reagieren ein Waldsystem und seine einzelnen Pflanzen auf extreme Dürre? Die beteiligten Prozesse zu verstehen ist maßgeblich, um Wälder widerstandsfähiger gegen zunehmende Trockenheit im Klimawandel zu machen und auch um Klimamodelle weiter präzisieren zu können. Ein Forschungsteam um Prof. Dr. Christiane Werner von der Universität Freiburg hat zu dieser Frage nun das bislang umfassendste Experiment unter Einsatz von stabilen Isotopen als Marker durchgeführt.
The increasing amount of greenhouse gases in the atmosphere is causing our climate to warm at an alarming rate. Information is vital for societies who must decide on pathways to climate neutrality. The European ICOS research structure, including Max-Planck Institute for Biogeochemistry, provides this information, as described in a recent article.
Ecosystems provide multiple services for humans. However, these services depend on basic ecosystem functions which are shaped by natural conditions like climate and species composition, and human interventions. A large international research team, led by the Max Planck Institute for Biogeochemistry, Jena, identified three key indicators that together summarize the integrative function of terrestrial ecosystems.
Wenn die Fotosynthese langfristig lahmgelegt ist, bilden junge Fichten Reserven, indem sie ihr Wachstum stoppen und sogar durch Selbstverdauung Energie gewinnen.