Hartmann, H.; Wirth, C.; Messier, C.; Berninger, F.: Effects of above- and belowground partial harvest disturbance on growth and water status of residual sugar maple. Tree Physiology 28 (12), S. 1851 - 1862 (2008)
Tautenhahn, S.; Heilmeier, H.; Gotzenberger, L.; Klotz, S.; Wirth, C.; Kuhn, I.: On the biogeography of seed mass in Germany - distribution patterns and environmental correlates. Ecography 31 (4), S. 457 - 468 (2008)
Wirth, C.; Lichstein, J. W.; Dushoff, J.; Chen, A.; Chapin, F. S.: White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate. Ecological Monographs 78 (4), S. 489 - 505 (2008)
Wutzler, T.; Wirth, C.; Schumacher, J.: Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty. Canadian Journal of Forest Research 38 (6), S. 1661 - 1675 (2008)
Balshi, M. S.; Mcguire, A. D.; Zhuang, Q.; Melillo, J.; Kicklighter, D. W.; Kasischke, E.; Wirth, C.; Flannigan, M.; Harden, J.; Clein, J. S.et al.; Burnside, T. J.; Mcallister, J.; Kurz, W. A.; Apps, M.; Shvidenko, A.: The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. Journal of Geophysical Research: Biogeosciences 112 (G2), G02029 (2007)
Crevoisier, C.; Shevliakova, E.; Gloor, M.; Wirth, C.; Pacala, S.: Drivers of fire in the boreal forests: Data constrained design of a prognostic model of burned area for use in dynamic global vegetation models. Journal of Geophysical Research: Atmospheres 112 (24), S. D24112 (2007)
Chapin Iii, F. S.; Woodwell, G. M.; Randerson, J. T.; Rastetter, E. B.; Lovett, G. M.; Baldocchi, D. D.; Clark, D. A.; Harmon, M. E.; Schimel, D. S.; Valentini, R.et al.; Wirth, C.; Aber, J. D.; Cole, J. J.; Goulden, M. L.; Harden, J. W.; Heimann, M.; Howarth, R. W.; Matson, P. A.; Mcguire, A. D.; Melillo, J. M.; Mooney, H. A.; Neff, J. C.; Houghton, R. A.; Pace, M. L.; Ryan, M. G.; Running, S. W.; Sala, O. E.; Schlesinger, W. H.; Schulze, E.-D.: Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9 (7), S. 1041 - 1050 (2006)
Mcguire, A. D.; Chapin Iii, F. S.; Walsh, J. E.; Wirth, C.: Integrated regional changes in arctic climate feedbacks: Implications for the global climate system. Annual Review of Environment and Resources 31, S. 61 - 91 (2006)
Schulze, E.-D.; Wirth, C.; Mollicone, D.; Ziegler, W.: Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 146 (1), S. 77 - 88 (2005)
Vetter, M.; Wirth, C.; Böttcher, H.; Churkina, G.; Schulze, E.-D.; Wutzler, T.; Weber, G.: Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Global Change Biology 11 (5), S. 810 - 827 (2005)
Joosten, R.; Schumacher, J.; Wirth, C.; Schulte, A.: Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management 189 (1-3), S. 87 - 96 (2004)
Wirth, C.; Schumacher, J.; Schulze, E.-D.: Generic biomass functions for Norway spruce in Central Europe - a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology 24 (2), S. 121 - 139 (2004)
Lloyd, J.; Shibistova, O.; Zolotoukhine, D.; Kolle, O.; Arneth, A.; Wirth, C.; Styles, J. M.; Tchebakova, N. M.; Schulze, E.-D.: Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus, Series B - Chemical and Physical Meteorology 54 (5), S. 590 - 610 (2002)
Mollicone, D.; Achard, F.; Marchesini, L. B.; Federici, S.; Wirth, C.; Leipold, M.; Rosellini, S.; Schulze, E.-D.; Valentini, R.: A remote sensing based approach to determine forest fire cycle: case study of the Yenisei Ridge dark taiga. Tellus, Series B - Chemical and Physical Meteorology 54 (5), S. 688 - 695 (2002)
Vygodskaya, N. N.; Schulze, E.-D.; Tchebakova, N. M.; Karpachevskii, L. O.; Kozlov, D.; Sidorov, K. N.; Panfyorov, M. I.; Abrazko, M. A.; Shaposhnikov, E. S.; Solnzeva, O. N.et al.; Minaeva, T. Y.; Jeltuchin, A. S.; Wirth, C.; Pugachevskii, A. V.: Climatic control of stand thinning in unmanaged spruce forests of the southern Taiga in European Russia. Tellus, Series B - Chemical and Physical Meteorology 54 (5), S. 443 - 461 (2002)
Wirth, C.; Czimczik, C. I.; Schulze, E.-D.: Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus, Series B - Chemical and Physical Meteorology 54 (5), S. 611 - 630 (2002)
Wirth, C.; Schulze, E.-D.; Kusznetova, V.; Milyukova, I.; Hardes, G.; Siry, M.; Schulze, B.; Vygodskaya, N. N.: Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests. Tree Physiology 22 (8), S. 537 - 552 (2002)
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.
Extreme Klimaereignisse gefährden die Qualität und Stabilität des Grundwassers, wenn Regenwasser die natürlichen Filterprozesse im Boden umgeht. Dies wurde in einer Langzeitstudie des Grundwassers mit neuen Analysemethoden nachgewiesen.
Eine neue Studie zeigt eine natürliche Lösung zur Abschwächung von Auswirkungen des Klimawandels wie extremen Wetterereignissen auf. Forschende fanden heraus, dass eine vielfältige Pflanzenwelt als Puffer gegen Schwankungen der Bodentemperatur wirkt. Dieser Puffer wiederum kann einen entscheidenden Einfluss auf wichtige Ökosystemprozesse haben.
Die Deutsche Forschungsgemeinschaft (DFG) fördert eine Forschungsgruppe im Jena Experiment für weitere vier Jahre mit insgesamt etwa fünf Millionen Euro. Der neue Fokus liegt auf der stabilisierenden Wirkung von Biodiversität gegen extreme Klimaereignisse wie Hitze, Frost oder Starkregen.
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
Microorganisms in aquifers deep below the earth’s surface produce similar amounts of biomass as those in some marine waters. This is the finding of researchers led by the Friedrich Schiller University Jena and the German Centre for Integrative Biodiversity Research (iDiv). The study has been published in Nature Geoscience.
Mikroorganismen zersetzen herabfallendes Laub und verbessern damit die Bodenqualität und wirken dem Klimawandel entgegen. Doch wie stimmen diese Einzeller sich über ihre Aufgabenverteilung ab? Diesem bisher wenig verstandenen Prozess ist ein internationales Forschungsteam auf den Grund gegangen.
Man sieht sie mit bloßem Auge nicht, aber unser Waldboden ist übersät mit Mikroorganismen. Sie zersetzen herabfallendes Laub und verbessern damit die Bodenqualität und wirken dem Klimawandel entgegen. Doch wie stimmen diese Einzeller sich über ihre Aufgabenverteilung ab? Diesem bisher wenig verstandenen Prozess ist ein internationales Forschungsteam auf den Grund gegangen. Die Ergebnisse der Studie wurden kürzlich in Scientific Reports veröffentlicht.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.
Extreme Klimaereignisse gefährden die Qualität und Stabilität des Grundwassers, wenn Regenwasser die natürlichen Filterprozesse im Boden umgeht. Dies wurde in einer Langzeitstudie des Grundwassers mit neuen Analysemethoden nachgewiesen.
Eine neue Studie zeigt eine natürliche Lösung zur Abschwächung von Auswirkungen des Klimawandels wie extremen Wetterereignissen auf. Forschende fanden heraus, dass eine vielfältige Pflanzenwelt als Puffer gegen Schwankungen der Bodentemperatur wirkt. Dieser Puffer wiederum kann einen entscheidenden Einfluss auf wichtige Ökosystemprozesse haben.
Die Deutsche Forschungsgemeinschaft (DFG) fördert eine Forschungsgruppe im Jena Experiment für weitere vier Jahre mit insgesamt etwa fünf Millionen Euro. Der neue Fokus liegt auf der stabilisierenden Wirkung von Biodiversität gegen extreme Klimaereignisse wie Hitze, Frost oder Starkregen.
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
Microorganisms in aquifers deep below the earth’s surface produce similar amounts of biomass as those in some marine waters. This is the finding of researchers led by the Friedrich Schiller University Jena and the German Centre for Integrative Biodiversity Research (iDiv). The study has been published in Nature Geoscience.
Mikroorganismen zersetzen herabfallendes Laub und verbessern damit die Bodenqualität und wirken dem Klimawandel entgegen. Doch wie stimmen diese Einzeller sich über ihre Aufgabenverteilung ab? Diesem bisher wenig verstandenen Prozess ist ein internationales Forschungsteam auf den Grund gegangen.
Man sieht sie mit bloßem Auge nicht, aber unser Waldboden ist übersät mit Mikroorganismen. Sie zersetzen herabfallendes Laub und verbessern damit die Bodenqualität und wirken dem Klimawandel entgegen. Doch wie stimmen diese Einzeller sich über ihre Aufgabenverteilung ab? Diesem bisher wenig verstandenen Prozess ist ein internationales Forschungsteam auf den Grund gegangen. Die Ergebnisse der Studie wurden kürzlich in Scientific Reports veröffentlicht.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.