Churkina, G.; Brown, D. G.; Keoleian, G.: Carbon stored in human settlements: the conterminous United States. Global Change Biology 16 (1), S. 135 - 143 (2010)
Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Heimann, M.; Jones, C.: Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences 7 (9), S. 2749 - 2764 (2010)
Luyssaert, S.; Ciais, P.; Piao, S. L.; Schulze, E.-D.; Jung, M.; Zaehle, S.; Schelhaas, M. J.; Reichstein, M.; Churkina, G.; Papale, D.et al.; Abril, G.; Beer, C.; Grace, J.; Loustau, D.; Matteucci, G.; Magnani, F.; Nabuurs, G. J.; Verbeeck, H.; Sulkava, M.; Van Der Werf, G. R.; Janssens, I.; Team, C. S.: The European carbon balance. Part 3: forests. Global Change Biology 16 (5), S. 1429 - 1450 (2010)
Churkina, G.; Brovkin, V.; Von Bloh, W.; Trusilova, K.; Jung, M.; Dentener, F.: Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochemical Cycles 23, S. GB4027 (2009)
Trusilova, K.; Jung, M.; Churkina, G.: On climate impacts of a potential expansion of urban land in Europe. Journal of Applied Meteorology and Climatology 48, S. 1971 - 1980 (2009)
Hakkenberg, R.; Churkina, G.; Rodeghiero, M.; Börner, A.; Steinhof, A.; Cescatti, A.: Temperature sensitivity of the turnover times of soil organic matter in forests. Ecological Applications 18 (1), S. 119 - 131 (2008)
Richardson, A. D.; Mahecha, M. D.; Falge, E.; Kattge, J.; Moffat, A. M.; Papale, D.; Reichstein, M.; Stauch, V. J.; Braswell, B. H.; Churkina, G.et al.; Kruijt, B.; Hollinger, D. Y.: Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. Agricultural and Forest Meteorology 148 (1), S. 38 - 50 (2008)
Trusilova, K.; Churkina, G.: The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution. Biogeosciences 5 (6), S. 1505 - 1515 (2008)
Trusilova, K.; Jung, M.; Churkina, G.; Karstens, U.; Heimann, M.; Claussen, M.: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5). Journal of Applied Meteorology and Climatology 47 (5), S. 1442 - 1455 (2008)
Jung, M.; Le Maire, G.; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; Reichstein, M.: Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences 4 (4), S. 647 - 656 (2007)
Jung, M.; Vetter, M.; Herold, M.; Churkina, G.; Reichstein, M.; Zaehle, S.; Ciais, P.; Viovy, N.; Bondeau, A.; Chen, Y.et al.; Trusilova, K.; Feser, F.; Heimann, M.: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles 21 (4), S. Gb4021 (2007)
Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.et al.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D. F.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147 (3-4), S. 209 - 232 (2007)
Jung, M.; Henkel, K.; Herold, M.; Churkina, G.: Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment 101 (4), S. 534 - 553 (2006)
Vom griechischen Philosophen Aristoteles über Charles Darwin bis heute haben sich Wissenschaftlerinnen und Wissenschaftler mit dieser grundlegenden Frage der Biologie beschäftigt. Entgegen der öffentlichen Wahrnehmung ist sie jedoch immer noch weitgehend ungelöst. Forschende haben nun einen neuen Ansatz für das Auffinden und die Abgrenzung von Arten mithilfe von künstlicher Intelligenz (KI) vorgestellt.
Die anthropogenen Emissionen von Lachgas (N2O), ein pro Molekül deutlich stärkeres Treibhausgas als Kohlenstoffdioxid oder Methan, stiegen zwischen 1980 und 2020 um etwa 40% an. Im Jahr 2020 erreichten die anthropogenen Emissionen in die Atmosphäre mehr als 10 Millionen Tonnen pro Jahr, so der neue Bericht „Global Nitrous Oxide Budget 2024“ des Global Carbon Project.
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Eine neue Studie zeigt eine natürliche Lösung zur Abschwächung von Auswirkungen des Klimawandels wie extremen Wetterereignissen auf. Forschende fanden heraus, dass eine vielfältige Pflanzenwelt als Puffer gegen Schwankungen der Bodentemperatur wirkt. Dieser Puffer wiederum kann einen entscheidenden Einfluss auf wichtige Ökosystemprozesse haben.
Die Kohlenstoffspeicherung im Boden kann dazu beitragen, den Klimawandel abzumildern. Eine neue Studie zeigt, dass die Bildung mineralgebundener organischer Substanz in erster Linie von der Mineralart abhängt, aber auch durch Landnutzung und Bewirtschaftungsintensität beeinflusst wird.
Die Deutsche Forschungsgemeinschaft (DFG) fördert eine Forschungsgruppe im Jena Experiment für weitere vier Jahre mit insgesamt etwa fünf Millionen Euro. Der neue Fokus liegt auf der stabilisierenden Wirkung von Biodiversität gegen extreme Klimaereignisse wie Hitze, Frost oder Starkregen.
Eine neue Studie zeigt, dass die Effizienz der mikrobiellen Kohlenstoffnutzung mindestens viermal stärker als andere biologische Faktoren oder Umweltbedingungen die globale Speicherung und Verteilung von Kohlenstoff im Boden beeinflusst.
Am Ende der Trockenzeit kommt es über dem australischen Kontinent zu jährlich wiederkehrenden CO2-Pulsen in der Atmosphäre. Neue Analysen zeigen, dass besonders viel CO2 freigesetzt wird, wenn starke Regenfälle auf ausgetrocknete Böden treffen und dort Mikroorganismen aktiviert werden. Dies deutet darauf hin, dass trockene Regionen einen größeren Einfluss auf die Variationen des globalen Kohlenstoffkreislaufs haben als bisher angenommen.
Extreme Klimaereignisse nehmen in Ausmaß und Häufigkeit zu, während die Biodiversität abnimmt. Forschende vom MPI-BGC, der Uni Leipzig, des Deutschen Zentrums für integrative Biodiversitäts-forschung (iDiv) und weiteren europäischen Einrichtungen bringen ihre Sorge zum Ausdruck, dass sich diese beiden Trends gegenseitig verstärken könnten.
Eine großangelegte Studie weist den Nutzen von hoher Biodiversität auf Wiesen- und Weideflächen für eine Vielzahl von Ökosystemleistungen und Interessengruppen nach.