Pitelka, L. F.; Gardner, R. H.; Ash, J.; Berry, S.; Gitay, H.; Noble, I. R.; Saunders, A.; Bradshaw, R. H. W.; Brubaker, L.; Clark, J. S.et al.; Davis, M. B.; Sugita, S.; Dyer, J. M.; Hengeveld, R.; Hope, G.; Huntley, B.; King, G. A.; Lavorel, S.; Mack, R. N.; Malanson, G. P.; Mcglone, M.; Prentice, I. C.; Rejmanek, M.: Plant migration and climate change. American Scientist 85 (5), S. 464 - 473 (1997)
Schimel, D. S.; Emanuel, W.; Rizzo, B.; Smith, T.; Woodward, F. I.; Fisher, H.; Kittel, T. G. F.; Mckeown, R.; Painter, T.; Rosenbloom, N.et al.; Ojima, D. S.; Parton, W. J.; Kicklighter, D. W.; Mcguire, A. D.; Melillo, J. M.; Pan, Y.; Haxeltine, A.; Prentice, I. C.; Sitch, S.; Hibbard, K.; Nemani, R.; Pierce, L.; Running, S.; Borchers, J.; Chaney, J.; Neilson, R.; Braswell, B. H.: Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecological Monographs 67 (2), S. 251 - 271 (1997)
Texier, D.; De Noblet, N.; Harrison, S. P.; Haxeltine, A.; Jolly, D.; Joussaume, S.; Laarif, F.; Prentice, I. C.; Tarasov, P.: Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dynamics 13 (12), S. 865 - 882 (1997)
Haxeltine, A.; Prentice, I. C.; Creswell, I. D.: A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7 (5), S. 651 - 666 (1996)
Joos, F.; Prentice, I. C.: A Paleo-perspective on changes in atmospheric CO2 and climate. In: The global carbon cycle, Bd. 62, S. 165 - 186 (Hg. Field, C. B.; Raupach, M. R.). Island Press, Washington (2004)
Spessa, A.; Mcbeth, B.; Thonicke, K.; Prentice, I. C.: Modelling the relationship between fire frequency, rainfall and vegetation in the Kimberleys region Australia, using a fire model coupled to a DGVM. In: Proceedings of the 3rd International Wildland Fire Conference, 4-6 Oct. 2003, Sydney (Hg. Goldammer, J.; Viegas, D.) (2003)
Guiot, J.; Prentice, I. C.; Peng, C.; Jolly, D.; Laarif, F.; Smith, B.: Reconstruction and modelling past changes in terrestrial primary production. In: Terrestrial global productivity, S. 479 - 498 (Hg. Roy, J.; Saugier, B.; Mooney, H. A.). Academic Press, San Diego (2001)
Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 2001 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, S. 427 - 435. Vandenhoeck & Ruprecht, Göttingen (2001)
Prentice, I. C.: Interactions of climate change and the terrestrial biosphere. In: Geosphere-biosphere interactions and climate, S. 176 - 198 (Hg. Bengtsson, L.; Hammer, C. U.). Pontifical Academy of Sciences, Cambridge (2001)
Prentice, I. C.; Farquhar, G. D.; Fasham, M. J. R.; Goulden, M. L.; Heimann, M.; Jaramillo, V. J.; Kheshgi, H. S.; Le Quéré, C.; Scholes, R. J.; Wallace, D. W. R.: The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: the scientific basis, S. 183 - 237 (Hg. Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; Van Der Linden, P. J. et al.). Cambridge University Press, Cambridge (2001)
Prentice, I. C.; Raynaud, D.: Palaeobiogeochemistry. In: Global biogeochemical cycles in the climate system, S. 87 - 94 (Hg. Schulze, E.-D.; Harrison, S. P.; Heimann, M.; Holland, E. A.; Lloyd, J. et al.). Academic Press, San Diego (2001)
Wallace, D. W. R.; Prentice, I. C.; Schimel, D.: The global carbon cycle. In: Contributions to global change research, S. 22 - 29 (Hg. Heinen, D.). German National Committee on Global Change Research, Bonn (2001)
Francois, L.; Kaplan, J. O.; Otto, D.; Roelandt, C.; Harrison, S. P.; Prentice, I. C.; Warnant, P.; Ramstein, G.: Comparison of vegetation distributions and terrestrial carbon budgets reconstructed for the last glacial maximum with several biosphere models. In: Paleoclimate Modelling Intercomparison Project (PMIP). Proceedings of the third PMIP workshop, La Huardière, Canada, 4-8 October 1999, S. 141 - 145 (Hg. De Vernal, A.; Braconnot, P.; Joussaume, S.; Taylor, K.) (2000)
Schulze, E.-D.; Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 2000 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, S. 457 - 464. Vandenhoeck & Ruprecht, Göttingen (2000)
Yu, G.; Sun, X.; Qin, B.; Song, C.; Li, H.; Prentice, I. C.; Harrison, S. P.: Pollend-based reconstruction of vegetation patterns of China in Mid-Holocene. In: Proceedings for the 60th Anniversary of the Founding of Nanjing Institute of Geography and Limnology, S. 369 - 375 (Hg. Nanjing Institute of Geography & Limnology, C.). Chinese Academic of Sciences (III) (2000)
Extreme Klimaereignisse gefährden die Qualität und Stabilität des Grundwassers, wenn Regenwasser die natürlichen Filterprozesse im Boden umgeht. Dies wurde in einer Langzeitstudie des Grundwassers mit neuen Analysemethoden nachgewiesen.
Häufigere starke Stürme zerstören immer größere Flächen des Amazonas-Regenwalds. Sturmschäden zwischen 1985 und 2020 wurden kartiert. Die Gesamtfläche der betroffenen Wälder hat sich in diesem Zeitraum etwa vervierfacht.
Niederschläge im Amazonas-Regenwald lassen massenhaft natürliche Nanopartikel entstehen, die zur Bildung von Wolken und weiteren Regenfällen führen können
Die Chinesische Akademie der Wissenschaften (CAS) und die Deutsche Akademie der Wissenschaften Leopoldina veranstalten vom 29. - 30. Oktober 2024 in Berlin eine gemeinsame Konferenz zu den Herausforderungen auf dem Weg zur Klimaneutralität.
Der Klimawandel verändert die globalen Wasserkreisläufe. Dabei wird der Regen anders verteilt: In der Mittelmeerregion kommt es einerseits zu längeren und intensiveren Dürren und andererseits zu mehr und heftigerem Starkregen. Modelle mit höherer Auflösung sollen Wetterextreme regional und lokal ebenso präzise voraussagen wie die Auswirkungen unter anderem auf die Landwirtschaft.
Eine Studie der Universität Leipzig, des Deutschen Zentrums für integrative Biodiversitätsforschung Halle-Jena-Leipzig (iDiv) und des MPI für Biogeochemie zeigt, dass Lücken im Kronendach eines Auenmischwalds einen direkten Einfluss auf die Temperatur und Feuchtigkeit im Waldboden haben, jedoch nur geringe Auswirkungen auf die Bodenaktivität.
Das Ordenskapitel hat den Schriftsteller, Philosophen und Filmemacher Alexander Kluge und den Mathematiker Gerd Faltings als inländische Ordensmitglieder und die Geologin Susan Trumbore und den Literaturwissenschaftler Stephen Greenblatt als ausländische Mitglieder in den Orden gewählt.
Vom griechischen Philosophen Aristoteles über Charles Darwin bis heute haben sich Wissenschaftlerinnen und Wissenschaftler mit dieser grundlegenden Frage der Biologie beschäftigt. Entgegen der öffentlichen Wahrnehmung ist sie jedoch immer noch weitgehend ungelöst. Forschende haben nun einen neuen Ansatz für das Auffinden und die Abgrenzung von Arten mithilfe von künstlicher Intelligenz (KI) vorgestellt.
Tropenwäldern werden durch menschliche Einflüsse kontinuierlich fragmentiert und geschädigt werden. Mittels Fernerkundungsdaten und modernsten Methoden der Datenanalyse können Forschende nun erstmalig zeigen, dass die Auswirkungen dieser Schädigung größer sind als bisher angenommen.
Am 24. Juni erhielt Prof. Dr. Henrik Hartmann, Institutsleiter des Julius Kühn-Instituts für Waldschutz und ehemaliger Gruppenleiter am Max-Planck-Institut für Biogeochemie, eine wichtige Auszeichnung für seine wissenschaftliche Leistung im Forstbereich. Wir gratulieren herzlich!