Chanca, I.; Levin, I.; Trumbore, S. E.; Macario, K.; Lavrič, J. V.; Quesada, C. A.; de Araújo, A. C.; Dias Júnior, C. Q.; van Asperen, H.; Hammer, S.et al.; Sierra, C.: How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon. Biogeosciences 22 (2), 472, S. 455 (2025)
Tangarife-Escobar, A.; Guggenberger, G.; Feng, X.; Munoz, E.; Chanca, I.; Peichl, M.; Smith, P.; Sierra, C.: Radiocarbon isotopic disequilibrium shows little incorporation of new carbon in mineral soils of a boreal forest ecosystem. Journal of Geophysical Research: Biogeosciences 129 (9), e2024JG008191 (2024)
von Fromm, S. F.; Hoyt, A. M.; Sierra, C.; Georgiou, K.; Doetterl, S.; Trumbore, S. E.: Controls and relationships of soil organic carbon abundance and persistence vary across pedo-climatic regions. Global Change Biology 30 (5), e17320 (2024)
Ramirez, J. A.; Craven, D.; Herrera-Ramirez, D.; Posada, J. M.; Reu, B.; Sierra, C. A.; Hoch, G.; Handa, I. T.; Messier, C.: Non-structural carbohydrate concentrations in tree organs vary across biomes and leaf habits, but are independent of the fast-slow plant economic spectrum. Frontiers in Plant Science 15, 1375958 (2024)
Muñoz, E.; Chanca, I.; González-Sosa, M.; Sarquis, A.; Tangarife-Escobar, A.; Sierra, C.: On the importance of time in carbon sequestration in soils and climate change mitigation. Global Change Biology 30 (3), e17229 (2024)
Tangarife-Escobar, A.; Guggenberger, G.; Feng, X.; Dai, G.; Urbina-Malo, C.; Azizi-Rad, M.; Sierra, C. A.: Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau. Biogeosciences 21 (5), S. 1277 - 1299 (2024)
Estupinan-Suarez, L. M.; Mahecha, M. D.; Brenning, A.; Kraemer, G.; Poveda, G.; Reichstein, M.; Sierra, C.: Spatial patterns of vegetation activity related to ENSO in Northern South America. Journal of Geophysical Research: Biogeosciences 129 (1), e2022JG007344 (2024)
Sierra, C.; Ahrens, B.; Bolinder, M. A.; Braakhekke, M. C.; von Fromm, S. F.; Kätterer, T.; Luo, Z.; Parvin, N.; Wang, G.: Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation. Global Change Biology 30 (1), e17153 (2024)
Munoz, E.; Chanca, I.; Sierra, C.: Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Global Change Biology 29 (23), S. 6441 - 6452 (2023)
Eglinton, T. I.; Graven, H. D.; Raymond, P. A.; Trumbore, S. E.; Aluwihare, L.; Bard, E.; Basu, S.; Friedlingstein, P.; Hammer, S.; Lester, J.et al.; Sanderman, J.; Schuur, E. A. G.; Sierra, C. A.; Synal, H.-A.; Turnbull, J. C.; Wacker, L.: Making the case for an International Decade of Radiocarbon. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230081 (2023)
Munoz, E.; Sierra, C. A.: Deterministic and stochastic components of atmospheric CO2 inside forest canopies and consequences for predicting carbon and water exchange. Agricultural and Forest Meteorology 341, 109624 (2023)
Stoner, S.; Trumbore, S. E.; González-Pérez, J. A.; Schrumpf, M.; Sierra, C. A.; Hoyt, A. M.; Chadwick, O.; Doetterl, S.: Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230139 (2023)
Stoner, S.; Schrumpf, M.; Hoyt, A. M.; Sierra, C. A.; Doetterl, S.; Galy, V.; Trumbore, S. E.: How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences 20 (15), S. 3151 - 3163 (2023)
Sarquis, A.; Sierra, C. A.: Information content in time series of litter decomposition studies and the transit time of litter in arid lands. Biogeosciences 20 (9), S. 1759 - 1771 (2023)
Extreme Niederschläge sollten bei wärmeren Temperaturen stärker werden. Messdaten aus den Tropen zeigen, dass die abkühlende Wirkung von Wolken diesen Zusammenhang verschleiert. Korrigiert man die Wolkeneffekte, wird klar dass steigende Temperaturen extreme Niederschläge verstärken.
Niederschläge im Amazonas-Regenwald lassen massenhaft natürliche Nanopartikel entstehen, die zur Bildung von Wolken und weiteren Regenfällen führen können
Der Klimawandel verändert die globalen Wasserkreisläufe. Dabei wird der Regen anders verteilt: In der Mittelmeerregion kommt es einerseits zu längeren und intensiveren Dürren und andererseits zu mehr und heftigerem Starkregen. Modelle mit höherer Auflösung sollen Wetterextreme regional und lokal ebenso präzise voraussagen wie die Auswirkungen unter anderem auf die Landwirtschaft.
Die Temperaturen an der Landoberfläche werden hauptsächlich durch die Erwärmung durch Sonnenlicht, aber auch durch Verdunstung und konvektive Wärmeübertragung in der Vertikalen bestimmt. In einer neuen Studie wurde die Rolle dieser beiden Prozesse mit Hilfe einer physikalischen Leistungsgrenze bestimmt.
Die Umsatzzeiten des Kohlenstoffs an Land bestimmen die Auswirkungen von Klima-veränderungen auf die Landoberfläche. Die Temperaturempfindlichkeit des Kohlen-stoffumsatzes ist daher von entscheidender Bedeutung. Unsere neue Studie belegt, dass die Feuchtebedingungen die Temperaturempfindlichkeit der Kohlenstoffumsatzzeiten stark verändern.
Eine neue Studie zeigt, dass bereits ein geringer Anstieg des atmosphärischen CO2 zu erkennbaren Auswirkungen auf die Funktionsweise von Ökosystemen führt. Anhand von Simulationen des am Max-Planck-Institut für Biogeochemie entwickelten Landoberflächenmodells hat ein internationales Team von Wissenschaftler*innen herausgefunden, dass ein erhöhter CO2-Gehalt zunächst Kenngrößen des Kohlenstoffkreislaufs wie die Produktivität der Vegetation und die Ausdehnung der Blattfläche beeinflusst.
Windturbinen brauchen beim massiven Ausbau Platz, um möglichst effizient zu sein. Generell kann Fotovoltaik deutlich mehr Strom erzeugen als Windkraft.
Wichtige Leistungen von Ökosystemen werden künftig zunehmend von der Wasserverfügbarkeit abhängen. Anhand aktueller Simulationen mit Klimamodellen fand ein internationales Forscherteam mehrere Regionen, in denen Wasser zunehmend die Ökosysteme limitiert. Darunter auch Zentraleuropa, der Amazonas und West-Russland.
Die Deutsche Forschungsgemeinschaft (DFG) hat die Förderung von drei Sonderforschungsbereichen (SFB) der Friedrich-Schiller-Universität Jena verlängert. Darunter ist auch der SFB AquaDiva, der in der dritten Förderperiode für die nächsten vier Jahre rund elf Millionen Euro erhält.
Wie effizient Pflanzen Wasser und Kohlendioxid für ihr Wachstum umsetzen, wird von der Verfügbarkeit von Stickstoff und Phosphor sowie deren Gleichgewicht im Ökosystem bestimmt. In einer neuen Studie analysierten Forscher des Max-Planck-Instituts für Biogeochemie in Jena und ihre spanischen Partner die Reaktionen von Pflanzen und deren Umgebung auf die Zugabe dieser Nährstoffe.
Dr. Sönke Zaehle ist seit dem 1. Mai 2020 neuer Direktor am Max-Planck-Instituts für Biogeochemie und übernimmt die Leitung der neuen Abteilung Biogeochemische Signale. Der Geoökologe untersucht, wie sich Landökosysteme und die Atmosphäre gegenseitig beeinflussen, und welche Rolle Nährstoffkreisläufe dabei spielen.
Die Offshore-Windenergie in der Nordsee spielt eine wichtige Rolle bei der europäischen Energiewende. Werden sich diese Windparks, da in den nächsten dreißig Jahren immer mehr davon geplant werden, allmählich der Grenze der tatsächlich vorhandenen Windenergie nähern?