Tanunchai, B.; Ji, L.; Schroeter, S. A.; Wahdan, S. F. M.; Larpkern, P.; Lehnert, A.-S.; Alves, E. G.; Gleixner, G.; Schulze, E. D.; Noll, M.et al.; Buscot, F.; Purahong, W.: A poisoned apple: First insights into community assembly and networks of the fungal pathobiome of healthy-looking senescing leaves of temperate trees in mixed forest ecosystem. Frontiers in Plant Science 13, 968218 (2022)
Tanunchai, B.; Schroeter, S. A.; Ji, L.; Wahdan, S. F. M.; Hossen, S.; Lehnert, A.-S.; Grünberg, H.; Gleixner, G.; Buscot, F.; Schulze, E. D.et al.; Noll, M.; Purahong, W.: More than you can see: Unraveling the ecology and biodiversity of lichenized fungi associated with leaves and needles of 12 temperate tree species using high-throughput sequencing. Frontiers in Microbiology 13, 907531 (2022)
Chowdhury, S.; Lange, M.; Malik, A. A.; Goodall, T.; Huang, J.; Griffiths, R. I.; Gleixner, G.: Plants with arbuscular mycorrhizal fungi efficiently acquire Nitrogen from substrate additions by shaping the decomposer community composition and their net plant carbon demand. Plant and Soil 475, S. 473 - 490 (2022)
Mielke, L.; Taubert, M.; Cesarz, S.; Ruess, L.; Kuesel, K.; Gleixner, G.; Lange, M.: Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia 90, 150787 (2022)
Gleixner, G.: Insights into the known 13C depletion of methane—contribution of the kinetic isotope effects on the serine hydroxymethyltransferase reaction. Frontiers in Chemistry 9, 698067 (2022)
Gayantha, K.; Roberts, P.; Routh, J.; Wedage, O.; Ott, F.; Frenzel, P.; Chandrajith, R.; Gleixner, G.: Mid-late Holocene sub-millennial scale inverse trends of South Asian summer and winter monsoons in Sri Lanka. Frontiers in Earth Science 9, 789291 (2021)
Simon, C.; Pimentel, T. P.; Monteiro, M. T. F.; Candido, L. A.; Gastmans, D.; Geilmann, H.; da Oliveira, R. C.; Rocha, J. B.; Pires, E.; Quesada, C. A.et al.; Forsberg, B. R.; Feirrera, S. J. F.; da Cunha, H. B.; Gleixner, G.: Molecular links between whitesand ecosystems and blackwater formation in the Rio Negro watershed. Geochimica et Cosmochimica Acta 311, S. 274 - 291 (2021)
Huang, J.; Hammerbacher, A.; Gershenzon, J.; van Dam, N. M.; Sala, A.; McDowell, N. G.; Chowdhury, S.; Gleixner, G.; Trumbore, S. E.; Hartmann, H.: Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proceedings of the National Academy of Sciences of the United States of America 118 (33), e2023297118 (2021)
Schroeter, N.; Mingram, J.; Kalanke, J.; Lauterbach, S.; Tjallingii, R.; Schwab, V. F.; Gleixner, G.: The reservoir age effect varies with the mobilization of pre-aged organic carbon in a high-altitude Central Asian catchment. Frontiers in Earth Science 9, 681931 (2021)
Extreme Niederschläge sollten bei wärmeren Temperaturen stärker werden. Messdaten aus den Tropen zeigen, dass die abkühlende Wirkung von Wolken diesen Zusammenhang verschleiert. Korrigiert man die Wolkeneffekte, wird klar dass steigende Temperaturen extreme Niederschläge verstärken.
Die Temperaturen an der Landoberfläche werden hauptsächlich durch die Erwärmung durch Sonnenlicht, aber auch durch Verdunstung und konvektive Wärmeübertragung in der Vertikalen bestimmt. In einer neuen Studie wurde die Rolle dieser beiden Prozesse mit Hilfe einer physikalischen Leistungsgrenze bestimmt.
Windturbinen brauchen beim massiven Ausbau Platz, um möglichst effizient zu sein. Generell kann Fotovoltaik deutlich mehr Strom erzeugen als Windkraft.
A new study shows that future ecosystem functioning will increasingly depend on water availability. Using recent simulations from climate models, an international team of scientists found several “hot spot regions” where increasing water limitation strongly affects ecosystems. These include Central Europe, the Amazon, and western Russia.
Microorganisms in aquifers deep below the earth’s surface produce similar amounts of biomass as those in some marine waters. This is the finding of researchers led by the Friedrich Schiller University Jena and the German Centre for Integrative Biodiversity Research (iDiv). The study has been published in Nature Geoscience.
You can't see them with the naked eye, but our forest ground is littered with microorganisms. They decompose falling leaves, thereby improving soil quality and counteracting climate change. But how do these single-celled organisms coordinate their tasks? An international research team has been looking into this little-understood process. The results of the study were recently published in Scientific Reports.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2) from the north coast of the United Kingdom. The study, with the participation of the Max Planck Institute for Biogeochemistry, was published Apr. 22 in Science Advances.
International researchers found a pattern of extreme climate conditions leading to forest dieback. To do this, the team had collected worldwide records of climate-related tree and forest dieback events over the past nearly five decades. The results, recently published in Nature Communications, reveal an ominous scenario for forests in the context of ongoing global warming.
International forest experts analyzed major tree and forest dieback events that occurred globally in the last decades in response to climate extremes. To their surprise many forests were strongly affected that were not considered threatened based on current scientific understanding. The study, led by the MPI-BGC and published in Annual Reviews in Plant Biology, underscores also that further tree and forest dieback is likely to occur.
An international research team succeeded in identifying global factors that explain the diversity of form and function in plants. Led by the University of Zurich, the Max Planck Institute for Biogeochemistry in Jena and the University of Leipzig, the researchers collected and analyzed plant data from around the world.
Precisely how does a forest system and the individual plants within it react to extreme drought? Understanding the processes involved is crucial to making forests more resilient in the increasingly dry climate that will result from climate change, and also important for refining climate models. A research team led by Prof. Dr. Christiane Werner from the University of Freiburg has conducted the most extensive experiment to date into this subject using stable isotopes to trace flows of water and carbon through a forest.
The increasing amount of greenhouse gases in the atmosphere is causing our climate to warm at an alarming rate. Information is vital for societies who must decide on pathways to climate neutrality. The European ICOS research structure, including Max-Planck Institute for Biogeochemistry, provides this information, as described in a recent article.