Vieira, S.; de Camargo, P. B.; Selhorst, D.; da Silva, R.; Hutyra, L.; Chambers, J. Q.; Brown, I. F.; Higuchi, N.; dos Santos, J.; Wofsy, S. C.et al.; Trumbore, S. E.; Martinelli, L. A.: Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 140 (3), pp. 468 - 479 (2004)
Borken, W.; Davidson, E. A.; Savage, K.; Gaudinski, J.; Trumbore, S. E.: Drying and wetting effects on carbon dioxide release from organic horizons. Soil Science Society of America 67 (6), pp. 1888 - 1896 (2003)
Dioumaeva, I.; Trumbore, S. E.; Schuur, E. A. G.; Goulden, M. L.; Litvak, M.; Hirsch, A. I.: Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon. Journal of Geophysical Research: Atmospheres 108 (D3), 8222, p. 1123 (2003)
Schuur, E. A. G.; Trumbore, S. E.; Mack, M. C.; Harden, J. W.: Isotopic composition of carbon dioxide from a boreal forest fire: Inferring carbon loss from measurements and modeling. Global Biogeochemical Cycles 17 (1), 1001 (2003)
Telles, E. D. C.; de Camargo, P. B.; Martinelli, L. A.; Trumbore, S. E.; da Costa, E. S.; Santos, J.; Higuchi, N.; Oliveira, R. C.: Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochemical Cycles 17 (2), pp. 9-1 - 9-12 (2003)
Agnelli, A.; Trumbore, S. E.; Corti, G.; Ugolini, F. C.: The dynamics of organic matter in rock fragments in soil investigated by 14C dating and measurements of 13C. European Journal of Soil Science 53 (1), pp. 147 - 159 (2002)
Hirsch, A. I.; Trumbore, S. E.; Goulden, M. L.: Direct measurement of the deep soil respiration accompanying seasonal thawing of a boreal forest soil. Journal of Geophysical Research: Atmospheres 108 (D3), 8221 (2002)
Krusche, A. V.; Martinelli, L. A.; Victoria, R. L.; Bernardes, M.; de Camargo, P. B.; Ballester, M. V.; Trumbore, S. E.: Composition of particulate and dissolved organic matter in a disturbed watershed of southeast Brazil (Piracicaba River basin). Water Research 36 (11), pp. 2743 - 2752 (2002)
Sanaiotti, T. M.; Martinelli, L. A.; Victoria, R. L.; Trumbore, S. E.; Camargo, P. B.: Past vegetation changes in Amazon savannas determined using carbon isotopes of soil organic matter. Biotropica 34 (1), pp. 2 - 16 (2002)
Gaudinski, J. B.; Trumbore, S. E.; Davidson, E. A.; Cook, A. C.; Markewitz, D.; Richter, D. D.: The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129 (3), pp. 420 - 429 (2001)
Perez, T.; Trumbore, S. E.; Tyler, S. C.; Matson, P. A.; Ortiz-Monasterio, I.; Rahn, T.; Griffith, D. W. T.: Identifying the agricultural imprint on the global N2O budget using stable isotopes. Journal of Geophysical Research: Atmospheres 106, pp. 9869 - 9878 (2001)
Quideau, S. A.; Chadwick, O. A.; Trumbore, S. E.; Johnson-Maynard, J. L.; Graham, R. C.; Anderson, M. A.: Vegetation control on soil organic matter dynamics. Organic Geochemistry 32 (2), pp. 247 - 252 (2001)
Canadell, J. G.; Mooney, H. A.; Baldocchi, D. D.; Berry, J. A.; Ehleringer, J. R.; Field, C. B.; Gower, S. T.; Hollinger, D. Y.; Hunt, J. E.; Jackson, R. B.et al.; Running, S. W.; Shaver, G. R.; Steffen, W.; Trumbore, S. E.; Valentini, R.; Bond, B. Y.: Carbon metabolism of the terrestrial biosphere: A multitechnique approach for improved understanding. Ecosystems 3 (2), pp. 115 - 130 (2000)
Gaudinski, J. B.; Trumbore, S. E.; Davidson, E. A.; Zheng, S. H.: Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51 (1), pp. 33 - 69 (2000)
Gower, S. T.; Hunter, A.; Campbell, J.; Vogel, J.; Veldhuis, H.; Harden, J.; Trumbore, S. E.; Norman, J. M.; Kucharik, C. J.: Nutrient dynamics of the southern and northern BOREAS boreal forests. Ecoscience 7 (4), pp. 481 - 490 (2000)
Harden, J. W.; Trumbore, S. E.; Stocks, B. J.; Hirsch, A.; Gower, S. T.; O'Neill, K. P.; Kasischke, E. S.: The role of fire in the boreal carbon budget. Global Change Biology 6, pp. 174 - 184 (2000)
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
Since the first measurement flight in 1994, the European research infrastructure IAGOS has developed a measurement technique that is used in commercial airplanes and regularly provide extensive climate data from the atmosphere.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.