Rzanny, M.; Bebber, A.; Wittich, H. C.; Fritz, A.; Boho, D.; Mäder, P.; Wäldchen, J.: More than rapid identification—Free plant identification apps can also be highly accurate. People and Nature 6 (6), S. 2178 - 2181 (2024)
Wäldchen, J.; Wittich, H. C.; Rzanny, M.; Fritz, A.; Mäder, P.: Towards more effective identification keys: A study of people identifying plant species characters. People and Nature 4 (6), S. 1603 - 1615 (2022)
Katal, N.; Rzanny, M.; Mäder, P.; Wäldchen, J.: Deep learning in plant phenological research: A systematic literature review. Frontiers in Plant Science 13, 805738 (2022)
Schmid, B.; Schmitz, M.; Rzanny, M.; Scherer-Lorenzen, M.; Mwangi, P. N.; Weisser, W. W.; Hector, A.; Schmid, R.; Flynn, D. F. B.: Removing subordinate species in a biodiversity experiment to mimic observational field studies. Grassland Research 1 (1), S. 53 - 62 (2022)
Mahecha, M. D.; Rzanny, M.; Kraemer, G.; Mäder, P.; Seeland, M.; Wäldchen, J.: Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44 (8), S. 1131 - 1142 (2021)
Mäder, P.; Boho, D.; Rzanny, M.; Seeland, M.; Wittich, H. C.; Deggelmann, A.; Wäldchen, J.: The Flora Incognita app – interactive plant species identfication. Methods in Ecology and Evolution 12 (7), S. 1335 - 1342 (2021)
Rzanny, M.; Mäder, P.; Deggelmann, A.; Chen, M.; Wäldchen, J.: Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods 15, 77 (2019)
Hines, J.; Giling, D. P.; Rzanny, M.; Voigt, W.; Meyer, S. T.; Weisser, W. W.; Eisenhauer, N.; Ebeling, A.: A meta‐food web for invertebrate species collected in a European grassland. Ecology 100 (6), e02679 (2019)
Seeland, M.; Rzanny, M.; Boho, D.; Wäldchen, J.; Mäder, P.: Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20, 4 (2019)
Wittich, H. C.; Seeland, M.; Wäldchen, J.; Rzanny, M.; Mäder, P.: Recommending plant taxa for supporting on-site species identification. BMC Bioinformatics 19, 190 (2018)
Ebeling, A.; Rzanny, M.; Lange, M.; Eisenhauer, N.; Hertzog, L. R.; Meyer, S. T.; Weisser, W. W.: Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127 (2), S. 208 - 219 (2018)
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
David Hafezi Rachti wurde gleich zweimal ausgezeichnet: für sein EGU-Poster mit dem diesjährigen „Outstanding Student and PhD candidate Presentation“ (OSPP) und für seine Bachelorarbeit erhielt er den ersten Preis des „Young Climate Scientist Award 2024“.
Die Umsetzung des Pariser Klimaabkommen ist inzwischen kaum mehr plausibel, kann aber trotzdem nicht aufgegeben werden. Das DKK hat in seinem Positionspapier in sechs Kernbotschaften zu diesem Dilemma Stellung bezogen.
Ein Forschungsteam hat einen Ansatz entwickelt, KI in Erdsystem-Modelle zu integrieren, und hierzu zwei Perspektiven zukünftiger Forschungsschwerpunkte veröffentlicht.
Der Klimawandel verändert die globalen Wasserkreisläufe. Dabei wird der Regen anders verteilt: In der Mittelmeerregion kommt es einerseits zu längeren und intensiveren Dürren und andererseits zu mehr und heftigerem Starkregen. Modelle mit höherer Auflösung sollen Wetterextreme regional und lokal ebenso präzise voraussagen wie die Auswirkungen unter anderem auf die Landwirtschaft.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Vom griechischen Philosophen Aristoteles über Charles Darwin bis heute haben sich Wissenschaftlerinnen und Wissenschaftler mit dieser grundlegenden Frage der Biologie beschäftigt. Entgegen der öffentlichen Wahrnehmung ist sie jedoch immer noch weitgehend ungelöst. Forschende haben nun einen neuen Ansatz für das Auffinden und die Abgrenzung von Arten mithilfe von künstlicher Intelligenz (KI) vorgestellt.
Die 73. Lindauer Nobelpreisträgertagung war der Physik gewidmet und fand vom 30. Juni bis 5. Juli 2024 statt. Sie brachte rund 40 Nobelpreisträger und 635 junge Wissenschaftler aus mehr als 90 Nationen zusammen.
Ein Forschungsteam unter der Leitung des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv) und der Universität Leipzig hat einen Algorithmus entwickelt, der Beobachtungsdaten der App Flora Incognita analysiert. Daraus lassen sich ökologische Muster ableiten, die Aufschluss über die Auswirkungen des Klimawandels auf die Pflanzenwelt geben.
Tropenwäldern werden durch menschliche Einflüsse kontinuierlich fragmentiert und geschädigt werden. Mittels Fernerkundungsdaten und modernsten Methoden der Datenanalyse können Forschende nun erstmalig zeigen, dass die Auswirkungen dieser Schädigung größer sind als bisher angenommen.
Das neue Forschungsprojekt "PollenNet" soll mit Hilfe von Künstlicher Intelligenz die präzise Vorhersage der Verbreitung von Pollen ermöglichen. Um die Vorsorge vor Allergien zu verbessern, bringen Expertinnen und Experten fachübergreifend neueste Erkenntnisse aus den verschiedensten Bereichen zusammen.