Kleidon, A.: Life as the major driver of planetary geochemical disequilibrium: Reply to comments on "Life, hierarchy, and the thermodynamic machinery of planet Earth". Physics of Life Reviews 7 (4), pp. 473 - 476 (2010)
Kleidon, A.; Malhi, Y.; Cox, P. M.: Maximum entropy production in environmental and ecological systems Introduction. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365 (1545), pp. 1297 - 1302 (2010)
Schymanski, S. J.; Kleidon, A.; Stieglitz, M.; Narula, J.: Maximum entropy production allows a simple representation of heterogeneity in semiarid ecosystems. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 365 (1545), pp. 1449 - 1455 (2010)
Simoncini, E.; Kleidon, A.; Gallori, E.: The emergence of life: Thermodynamics of chemical free energy generation in off-axis hydrothermal vent systems and its consequences for compartmentalization and life's origins. Journal of Cosmology 10, pp. 3325 - 3344 (2010)
Xu, X. K.; Kleidon, A.; Miller, L.; Wang, S. Q.; Wang, L. Q.; Dong, G. C.: Late Quaternary glaciation in the Tianshan and implications for palaeoclimatic change: a review. Boreas 39 (2), pp. 215 - 232 (2010)
Kleidon, A.: Climatic constraints on maximum levels of human metabolic activity and their relation to human evolution and global change. Climatic Change 95 (3-4), pp. 405 - 431 (2009)
Kleidon, A.; Adams, J.; Pavlick, R.; Reu, B.: Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity. Environmental Research Letters 4 (1), p. 014007 (2009)
Arens, S.; Kleidon, A.: Global sensitivity of weathering rates to atmospheric CO2 under the assumption of saturated river discharge. Mineralogical Magazine 72 (1), pp. 301 - 304 (2008)
Kleidon, A.; Schymanski, S.: Thermodynamics and optimality of the water budget on land: A review. Geophysical Research Letters 35 (20), p. L20404 (2008)
Kleidon, A.: Thermodynamics and environmental constraints make the biosphere predictable - a response to Volk. Climatic Change 85 (3-4), pp. 259 - 266 (2007)
Kleidon, A.; Fraedrich, K.; Low, C.: Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification? Biogeosciences 4 (5), pp. 707 - 714 (2007)
Kleidon, A.: Quantifying the biologically possible range of steady-state soil and surface climates with climate model simulations. Biologia (Bratislava) 61 (19), pp. S234 - S239 (2006)
Kleidon, A.: The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Global and Planetary Change 54 (1-2), pp. 109 - 127 (2006)
Kleidon, A.: How meaningful is surface temperature in characterizing the climate system response to human-driven land cover change? iLeaps Newsletter 2, pp. 16 - 17 (2006)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.