Kühn, J.; Richter, A.; Kahl, T.; Bauhus, J.; Schöning, I.; Ruess, L.: Community level lipid profiling of consumers as a tool for soil food web diagnostics. Methods in Ecology and Evolution 9 (5), S. 1265 - 1275 (2018)
Nacke, H.; Schöning, I.; Schindler, M.; Schrumpf, M.; Daniel, R.; Nicol, G. W.; Prosser, J. I.: Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiology Ecology 93 (11), fix144 (2017)
Pena, R.; Lang, C.; Lohaus, G.; Boch, S.; Schall, P.; Schöning, I.; Ammer, C.; Fischer, M.; Polle, A.: Phylogenetic and functional traits of ectomycorrhizal assemblages in top soil from different biogeographic regions and forest types. Mycorrhiza 27 (3), S. 233 - 245 (2017)
Stempfhuber, B.; Richter-Heitmann, T.; Bienek, L.; Schöning, I.; Schrumpf, M.; Friedrich, M.; Schulz, S.; Schloter, M.: Soil pH and plant diversity drive co-occurrence patterns of ammonia and nitrite oxidizer in soils from forest ecosystems. Biology and Fertility of Soils 53 (6), S. 691 - 700 (2017)
Boch, S.; Prati, D.; Schöning, I.; Fischer, M.: Lichen species richness is highest in non-intensively used grasslands promoting suitable microhabitats and low vascular plant competition. Biodiversity and Conservation 25 (2), S. 225 - 238 (2016)
Kaiser, K.; Wemheuer, B.; Korolkow, V.; Wemheuer, F.; Nacke, H.; Schöning, I.; Schrumpf, M.; Daniel, R.: Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports 6, 33696 (2016)
Klaus, V. H.; Hölzel, N.; Prati, D.; Schmitt, B.; Schöning, I.; Schrumpf, M.; Solly, E.; Hänsel, F.; Fischer, M.; Kleinebecker, T.: Plant diversity moderates drought stress in grasslands: Implications from a large real-world study on 13C natural abundances. Science of the Total Environment 555-567, S. 215 - 222 (2016)
Nacke, H.; Goldmann, K.; Schöning, I.; Pfeiffer, B.; Kaiser, K.; Castillo-Villamizar, G. A.; Schrumpf, M.; Buscot, F.; Daniel, R.; Wubetz, T.: Fine spatial scale variation of soil microbial communities under European beech and Norway spruce. Frontiers in Microbiology 7, 2067 (2016)
Goldmann, K.; Schöning, I.; Buscot, F.; Wubet, T.: Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems. Frontiers in Microbiology 6, 1300 (2015)
Marcus, T.; Boch, S.; Durka, W.; Fischer, M.; Gossner, M. M.; Mueller, J.; Schöning, I.; Weisser, W. W.; Drees, C.; Assmann, T.: Living in heterogeneous woodlands - Are habitat continuity or quality drivers of genetic variability in a flightless ground beetle? PLoS One 10 (12), e0144217 (2015)
Soliveres, S.; Maestre, F. T.; Ulrich, W.; Manning, P.; Boch, S.; Bowker, M. A.; Prati, D.; Delgado-Baquerizo, M.; Quero, J. L.; Schöning, I.et al.; Gallardo, A.; Weisser, W.; Müller, J.; Socher, S. A.; Garcıa-Gomez, M.; Ochoa, V.; Schulze, E. D.; Fischer, M.; Allan, E.: Intransitive competition is widespread in plant communities and maintains their species richness. Ecology Letters 18 (8), S. 790 - 798 (2015)
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
Die Kohlenstoffspeicherung im Boden kann dazu beitragen, den Klimawandel abzumildern. Eine neue Studie zeigt, dass die Bildung mineralgebundener organischer Substanz in erster Linie von der Mineralart abhängt, aber auch durch Landnutzung und Bewirtschaftungsintensität beeinflusst wird.
Das internationale Cabo-Verde-Atmosphären-Observatorium (CVAO) wird weiter ausgebaut: Der Präsident der Republik Cabo Verde José Maria Neves und Bundespräsident Frank-Walter Steinmeier legten am Donnerstag den Grundstein für ein neues Laborgebäude auf São Vicente, einer der Kapverdischen Inseln vor Afrika. Das Max-Planck-Institut für Biogeochemie war am Aufbau der Station beteiligt und führt seitdem am CVAO Langzeitmessungen u.a. der Treibhausgase Methan, Kohlendioxid und Lachgas durch.
Forscher der University of California und des Max-Planck-Instituts für Biogeochemie haben ein genaueres Modell des globalen Kohlenstoffkreislaufs entwickelt. Das Modell berücksichtigt besser, wie die Ökosysteme der Landoberfläche zu den atmosphärischen Konzentrationen des Treibhausgases Kohlendioxid beitragen.
Kohlenstoffsenken der Landoberfläche mildern den Treibhauseffekt. Ein internationales Team von Wissenschaftler*innen hat nun ermittelt, dass der überwiegende Teil der gesamten oberirdischen Kohlenstoffspeicherung in Europa durch die Wälder Osteuropas erfolgt. Vor allem durch die veränderte Landnutzung ist diese Kohlenstoffsenke jedoch zurückgegangen.
Eine neue Studie zeigt, dass die Effizienz der mikrobiellen Kohlenstoffnutzung mindestens viermal stärker als andere biologische Faktoren oder Umweltbedingungen die globale Speicherung und Verteilung von Kohlenstoff im Boden beeinflusst.