Schwab, V. F.; Nowak, M.; Elder, C. D.; Trumbore, S. E.; Xu, X.; Gleixner, G.; Lehmann, R.; Pohnert, G.; Muhr, J.; Kuesel, K.et al.; Totsche, K. U.: 14C-free carbon is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resources Research 55 (3), pp. 2104 - 2121 (2019)
Schwab, V. F.; Nowak, M.; Trumbore, S. E.; Xu, X.; Gleixner, G.; Muhr, J.; Kuesel, K.; Totsche, K. U.: Isolation of individual saturated fatty acid methyl esters derived from groundwater phospholipids by preparative high-pressure liquid chromatography for compound-specific radiocarbon analyses. Water Resources Research 55 (3), pp. 2521 - 2531 (2019)
Nowak, M.; Schwab, V. F.; Lazar, C. S.; Behrendt, T.; Kohlhepp, B.; Totsche, K. U.; Küsel, K.; Trumbore, S. E.: Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages. Hydrology and Earth System Sciences 21 (9), pp. 4283 - 4300 (2017)
Barth, J. A. C.; Nowak, M.; Zimmer, M.; Norden, B.; van Geldern, R.: Monitoring of cap-rock integrity during CCS from field data at the Ketzin pilot site (Germany): Evidence from gas composition and stable carbon isotopes. International Journal of Greenhouse Gas Control 43, pp. 133 - 140 (2015)
Nowak, M.; Beulig, F.; von Fischer, J.; Muhr, J.; Küsel, K.; Trumbore, S. E.: Autotrophic fixation of geogenic CO2 by microorganisms contributes to soil organic matter formation and alters isotope signatures in a wetland mofette. Biogeosciences 12 (3), pp. 7169 - 7183 (2015)
van Geldern, R.; Nowak, M.; Zimmer, M.; Szizybalski, A.; Myrttinen, A.; Barth, J. A. C.; Jost, H.-J.: Field-based stable isotope analysis of carbon dioxide by mid-infrared laser spectroscopy for carbon capture and storage monitoring. Analytical Chemistry 86 (24), pp. 12191 - 12198 (2015)
Nowak, M.: The role of microbial CO2 fixation for belowground carbon cycling and ist influence on carbon isotopic signatures. Dissertation, XI, 149 pp., Friedrich Schiller University Jena, Jena (2017)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
In the annual ranking of the world's most cited and thus most influential scientists, five authors from our institute are once again represented in 2024.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
On June 24, Prof. Dr. Henrik Hartmann, head of the Julius Kühn Institute for Forest Protection and former group leader at the Max Planck Institute for Biogeochemistry, received an important award for his scientific achievements in the field of forestry. Our warmest congratulations!