Meng, M.; Ni, J.; Zong, M. J.: Impacts of changes in climate variability on regional vegetation in China: NDVI-based analysis from 1982 to 2000. Ecological Research 26 (2), pp. 421 - 428 (2011)
Ashiq, M. W.; Zhao, C. Y.; Ni, J.; Akhtar, M.: GIS-based high-resolution spatial interpolation of precipitation in mountain-plain areas of Upper Pakistan for regional climate change impact studies. Theoretical and Applied Climatology 99 (3-4), pp. 239 - 253 (2010)
Ni, J.; Yu, G.; Harrison, S. P.; Prentice, I. C.: Palaeovegetation in China during the late Quaternary: Biome reconstructions based on a global scheme of plant functional types. Palaeogeography, Palaeoclimatology, Palaeoecology 289 (1-4), pp. 44 - 61 (2010)
Ni, J.; Wang, G. H.; Bai, Y. F.; Li, X. Z.: Scale-dependent relationships between plant diversity and above-ground biomass in temperate grasslands, south-eastern Mongolia. Journal of Arid Environments 68 (1), pp. 132 - 142 (2007)
Ni, J.; Harrison, S. P.; Prentice, I. C.; Kutzbach, J. E.; Sitch, S.: Impact of climate variability on present and Holocene vegetation: A model-based study. Ecological Modelling 191 (3-4), pp. 469 - 486 (2006)
Wang, G.-H.; Ni, J.: Responses of plant functional types to an environmental gradient on the Northeast China Transect. Ecological Research 20 (5), pp. 563 - 572 (2005)
Wang, Q.; Ni, J.; Tenhunen, J.: Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography 14 (4), pp. 379 - 393 (2005)
Ni, J.: Corrigendum to "Net primary productivity in forests of China: scaling-up of national inventory data and comparison with model predictions" (Forest Ecology and Management, vol 187 (2003), 485-495). Forest Ecology and Management 194 (1-3), p. 413 (2004)
Ni, J.: Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology 174 (2), pp. 217 - 234 (2004)
Ni, J.: Forest productivity of the Altay and Tianshan Mountains in the dryland, northwestern China. Forest Ecology and Management 202 (1-3), pp. 13 - 22 (2004)
Ni, J.: Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia. Journal of Arid Environments 53 (4), pp. 501 - 516 (2003)
Ni, J.: Net primary productivity in forests of China: scaling-up of national inventory data and comparison with model predictions. Forest Ecology and Management 176 (1-3), pp. 485 - 495 (2003)
Ni, J.; Ding, S.-Y.: Modeling the large-scale distribution of plant diversity: a possibility inferred from climate and productivity. Acta Phytoecologica Sinica 26 (5), pp. 568 - 574 (2002)
Clark, D. A.; Brown, S.; Kicklighter, D. W.; Chambers, J. Q.; Thomlinson, J. R.; Ni, J.: Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11 (2), pp. 356 - 370 (2001)
Clark, D. A.; Brown, S.; Kicklighter, D. W.; Chambers, J. Q.; Thomlinson, J. R.; Ni, J.; Holland, E. A.: NPP in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11: 371-384. Appendix 1. Estimates from the literature of net primary productivity in tropical forests. Ecological Archives A011-006-A1, pp. 1 - 19 (2001)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
In the annual ranking of the world's most cited and thus most influential scientists, five authors from our institute are once again represented in 2024.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
On June 24, Prof. Dr. Henrik Hartmann, head of the Julius Kühn Institute for Forest Protection and former group leader at the Max Planck Institute for Biogeochemistry, received an important award for his scientific achievements in the field of forestry. Our warmest congratulations!