Ruiz-Erazo, C. E.; Riascos-Acosta, R. I.; Guerrero-Martínez, E. S.; Marín-Vélez, A. M.; Sierra, C.; Ramírez-Correa, J. A.: Carbon sequestration potential in Retrophyllum rospigliosii (Pilg.) C. N. Page plantations for restoration purposes in the Colombian Andean region. Revista Chapingo Serie Ciencias Forestales y del Ambiente 91, e24009 (2025)
Chanca, I.; Levin, I.; Trumbore, S. E.; Macario, K.; Lavrič, J. V.; Quesada, C. A.; de Araújo, A. C.; Dias Júnior, C. Q.; van Asperen, H.; Hammer, S.et al.; Sierra, C.: How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon. Biogeosciences 22 (2), 472, p. 455 (2025)
Tangarife-Escobar, A.; Guggenberger, G.; Feng, X.; Munoz, E.; Chanca, I.; Peichl, M.; Smith, P.; Sierra, C.: Radiocarbon isotopic disequilibrium shows little incorporation of new carbon in mineral soils of a boreal forest ecosystem. Journal of Geophysical Research: Biogeosciences 129 (9), e2024JG008191 (2024)
von Fromm, S. F.; Hoyt, A. M.; Sierra, C.; Georgiou, K.; Doetterl, S.; Trumbore, S. E.: Controls and relationships of soil organic carbon abundance and persistence vary across pedo-climatic regions. Global Change Biology 30 (5), e17320 (2024)
Ramirez, J. A.; Craven, D.; Herrera-Ramirez, D.; Posada, J. M.; Reu, B.; Sierra, C. A.; Hoch, G.; Handa, I. T.; Messier, C.: Non-structural carbohydrate concentrations in tree organs vary across biomes and leaf habits, but are independent of the fast-slow plant economic spectrum. Frontiers in Plant Science 15, 1375958 (2024)
Muñoz, E.; Chanca, I.; González-Sosa, M.; Sarquis, A.; Tangarife-Escobar, A.; Sierra, C.: On the importance of time in carbon sequestration in soils and climate change mitigation. Global Change Biology 30 (3), e17229 (2024)
Tangarife-Escobar, A.; Guggenberger, G.; Feng, X.; Dai, G.; Urbina-Malo, C.; Azizi-Rad, M.; Sierra, C. A.: Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau. Biogeosciences 21 (5), pp. 1277 - 1299 (2024)
Estupinan-Suarez, L. M.; Mahecha, M. D.; Brenning, A.; Kraemer, G.; Poveda, G.; Reichstein, M.; Sierra, C.: Spatial patterns of vegetation activity related to ENSO in Northern South America. Journal of Geophysical Research: Biogeosciences 129 (1), e2022JG007344 (2024)
Sierra, C.; Ahrens, B.; Bolinder, M. A.; Braakhekke, M. C.; von Fromm, S. F.; Kätterer, T.; Luo, Z.; Parvin, N.; Wang, G.: Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation. Global Change Biology 30 (1), e17153 (2024)
Munoz, E.; Chanca, I.; Sierra, C.: Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Global Change Biology 29 (23), pp. 6441 - 6452 (2023)
Eglinton, T. I.; Graven, H. D.; Raymond, P. A.; Trumbore, S. E.; Aluwihare, L.; Bard, E.; Basu, S.; Friedlingstein, P.; Hammer, S.; Lester, J.et al.; Sanderman, J.; Schuur, E. A. G.; Sierra, C. A.; Synal, H.-A.; Turnbull, J. C.; Wacker, L.: Making the case for an International Decade of Radiocarbon. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230081 (2023)
Munoz, E.; Sierra, C. A.: Deterministic and stochastic components of atmospheric CO2 inside forest canopies and consequences for predicting carbon and water exchange. Agricultural and Forest Meteorology 341, 109624 (2023)
Stoner, S.; Trumbore, S. E.; González-Pérez, J. A.; Schrumpf, M.; Sierra, C. A.; Hoyt, A. M.; Chadwick, O.; Doetterl, S.: Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230139 (2023)
Stoner, S.; Schrumpf, M.; Hoyt, A. M.; Sierra, C. A.; Doetterl, S.; Galy, V.; Trumbore, S. E.: How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences 20 (15), pp. 3151 - 3163 (2023)
Sarquis, A.; Sierra, C. A.: Information content in time series of litter decomposition studies and the transit time of litter in arid lands. Biogeosciences 20 (9), pp. 1759 - 1771 (2023)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
In the annual ranking of the world's most cited and thus most influential scientists, five authors from our institute are once again represented in 2024.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
On June 24, Prof. Dr. Henrik Hartmann, head of the Julius Kühn Institute for Forest Protection and former group leader at the Max Planck Institute for Biogeochemistry, received an important award for his scientific achievements in the field of forestry. Our warmest congratulations!