Zhang, X.; Xu, B.; Günther, F.; Witt, R.; Wang, M.; Xie, Y.; Zhao, H.; Li, J.; Gleixner, G.: Rapid northward shift of the Indian monsoon on the Tibetan Plateau at the end of the Little Ice Age. Journal of Geophysical Research: Atmospheres 122 (17), pp. 9262 - 9279 (2017)
Saini, J.; Günther, F.; Aichner, B.; Mischke, S.; Herzschuh, U.; Zhang, C.; Mäusbacher, R.; Gleixner, G.: Climate variability in the past ∼19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona. Quaternary Science Reviews 157 (1), pp. 129 - 140 (2017)
Witt, R.; Günther, F.; Lauterbach, S.; Kasper, T.; Mäusbacher, R.; Yao, T.; Gleixner, G.: Biogeochemical evidence for freshwater periods during the Last Glacial Maximum recorded in lake sediments from Nam Co, south-central Tibetan Plateau. Journal of Paleolimnology 55 (1), pp. 67 - 82 (2016)
Günther, F.; Thiele, A.; Gleixner, G.; Xu, B.; Yao, T.; Schouten, S.: Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: Implications for GDGT-based proxies in saline high mountain lakes. Organic Geochemistry 67, pp. 19 - 30 (2014)
Günther, F.; Aichner, B.; Siegwolf, R.; Xu, B.; Yao, T.; Gleixner, G.: A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau. Quaternary International 313-314, pp. 3 - 16 (2013)
Günther, F.; Mügler, I.; Mäusbacher, R.; Daut, G.; Leopold, K.; Gerstmann, U. C.; Xu, B.; Yao, T.; Gleixner, G.: Response of δ D values of sedimentary n-alkanes to variations in source water isotope signals and climate proxies at lake Nam Co, Tibetan Plateau. Quaternary International 236, pp. 82 - 90 (2011)
Günther, F.: Reconstruction of Asian monsoon using compound-specific isotope signals of aquatic and terrestrial biomarkers in Tibetan lake systems. Dissertation, Friedrich-Schiller-Universität, Jena (2013)
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
Since the first measurement flight in 1994, the European research infrastructure IAGOS has developed a measurement technique that is used in commercial airplanes and regularly provide extensive climate data from the atmosphere.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.