Pitelka, L. F.; Gardner, R. H.; Ash, J.; Berry, S.; Gitay, H.; Noble, I. R.; Saunders, A.; Bradshaw, R. H. W.; Brubaker, L.; Clark, J. S.et al.; Davis, M. B.; Sugita, S.; Dyer, J. M.; Hengeveld, R.; Hope, G.; Huntley, B.; King, G. A.; Lavorel, S.; Mack, R. N.; Malanson, G. P.; Mcglone, M.; Prentice, I. C.; Rejmanek, M.: Plant migration and climate change. American Scientist 85 (5), pp. 464 - 473 (1997)
Schimel, D. S.; Emanuel, W.; Rizzo, B.; Smith, T.; Woodward, F. I.; Fisher, H.; Kittel, T. G. F.; Mckeown, R.; Painter, T.; Rosenbloom, N.et al.; Ojima, D. S.; Parton, W. J.; Kicklighter, D. W.; Mcguire, A. D.; Melillo, J. M.; Pan, Y.; Haxeltine, A.; Prentice, I. C.; Sitch, S.; Hibbard, K.; Nemani, R.; Pierce, L.; Running, S.; Borchers, J.; Chaney, J.; Neilson, R.; Braswell, B. H.: Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecological Monographs 67 (2), pp. 251 - 271 (1997)
Texier, D.; De Noblet, N.; Harrison, S. P.; Haxeltine, A.; Jolly, D.; Joussaume, S.; Laarif, F.; Prentice, I. C.; Tarasov, P.: Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dynamics 13 (12), pp. 865 - 882 (1997)
Haxeltine, A.; Prentice, I. C.; Creswell, I. D.: A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7 (5), pp. 651 - 666 (1996)
Joos, F.; Prentice, I. C.: A Paleo-perspective on changes in atmospheric CO2 and climate. In: The global carbon cycle, Vol. 62, pp. 165 - 186 (Eds. Field, C. B.; Raupach, M. R.). Island Press, Washington (2004)
Spessa, A.; Mcbeth, B.; Thonicke, K.; Prentice, I. C.: Modelling the relationship between fire frequency, rainfall and vegetation in the Kimberleys region Australia, using a fire model coupled to a DGVM. In: Proceedings of the 3rd International Wildland Fire Conference, 4-6 Oct. 2003, Sydney (Eds. Goldammer, J.; Viegas, D.) (2003)
Guiot, J.; Prentice, I. C.; Peng, C.; Jolly, D.; Laarif, F.; Smith, B.: Reconstruction and modelling past changes in terrestrial primary production. In: Terrestrial global productivity, pp. 479 - 498 (Eds. Roy, J.; Saugier, B.; Mooney, H. A.). Academic Press, San Diego (2001)
Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 2001 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, pp. 427 - 435. Vandenhoeck & Ruprecht, Göttingen (2001)
Prentice, I. C.: Interactions of climate change and the terrestrial biosphere. In: Geosphere-biosphere interactions and climate, pp. 176 - 198 (Eds. Bengtsson, L.; Hammer, C. U.). Pontifical Academy of Sciences, Cambridge (2001)
Prentice, I. C.; Farquhar, G. D.; Fasham, M. J. R.; Goulden, M. L.; Heimann, M.; Jaramillo, V. J.; Kheshgi, H. S.; Le Quéré, C.; Scholes, R. J.; Wallace, D. W. R.: The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: the scientific basis, pp. 183 - 237 (Eds. Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; Van Der Linden, P. J. et al.). Cambridge University Press, Cambridge (2001)
Prentice, I. C.; Raynaud, D.: Palaeobiogeochemistry. In: Global biogeochemical cycles in the climate system, pp. 87 - 94 (Eds. Schulze, E.-D.; Harrison, S. P.; Heimann, M.; Holland, E. A.; Lloyd, J. et al.). Academic Press, San Diego (2001)
Wallace, D. W. R.; Prentice, I. C.; Schimel, D.: The global carbon cycle. In: Contributions to global change research, pp. 22 - 29 (Ed. Heinen, D.). German National Committee on Global Change Research, Bonn (2001)
Francois, L.; Kaplan, J. O.; Otto, D.; Roelandt, C.; Harrison, S. P.; Prentice, I. C.; Warnant, P.; Ramstein, G.: Comparison of vegetation distributions and terrestrial carbon budgets reconstructed for the last glacial maximum with several biosphere models. In: Paleoclimate Modelling Intercomparison Project (PMIP). Proceedings of the third PMIP workshop, La Huardière, Canada, 4-8 October 1999, pp. 141 - 145 (Eds. De Vernal, A.; Braconnot, P.; Joussaume, S.; Taylor, K.) (2000)
Schulze, E.-D.; Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 2000 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, pp. 457 - 464. Vandenhoeck & Ruprecht, Göttingen (2000)
Yu, G.; Sun, X.; Qin, B.; Song, C.; Li, H.; Prentice, I. C.; Harrison, S. P.: Pollend-based reconstruction of vegetation patterns of China in Mid-Holocene. In: Proceedings for the 60th Anniversary of the Founding of Nanjing Institute of Geography and Limnology, pp. 369 - 375 (Ed. Nanjing Institute of Geography & Limnology, C.). Chinese Academic of Sciences (III) (2000)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.