Takahara, H.; Sugita, S.; Harrison, S. P.; Miyoshi, N.; Morita, Y.; Uchiyama, T.: Pollen-based reconstructions of Japanese biomes at 0,6000 and 18,000 14C yr BP. Journal of Biogeography 27 (3), pp. 665 - 683 (2000)
Farrera, I.; Harrison, S. P.; Prentice, I. C.; Ramstein, G.; Guiot, J.; Bartlein, P. J.; Bonnefille, R.; Bush, M.; Cramer, W.; Von Grafenstein, U.et al.; Holmgren, K.; Hooghiemstra, H.; Hope, G.; Jolly, D.; Lauritzen, S.-E.; Ono, Y.; Pinot, S.; Stute, M.; Yu, G.: Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry. Climate Dynamics 15 (11), pp. 823 - 856 (1999)
Joussaume, S.; Taylor, K. E.; Braconnot, P.; Mitchell, J. F. B.; Kutzbach, J. E.; Harrison, S. P.; Prentice, I. C.; Broccoli, A. J.; Abe-Ouchi, A.; Bartlein, P. J.et al.; Bonfils, C.; Dong, B.; Guiot, J.; Herterich, K.; Hewitt, C. D.; Jolly, D.; Kim, J. W.; Kislov, A.; Kitoh, A.; Loutre, M. F.; Masson, V.; Mcavaney, B.; Mcfarlane, N.; De Noblet, N.; Peltier, W. R.; Peterschmitt, J. Y.; Pollard, D.; Rind, D.; Royer, J. F.; Schlesinger, M. E.; Syktus, J.; Thompson, S.; Valdes, P.; Vettoretti, G.; Webb, R. S.; Wyputta, U.: Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters 26 (7), pp. 859 - 862 (1999)
Kohfeld, K. E.; Derbyshire, E.; Harrison, S. P.; Muhs, D.; Wintle, A.; Zhou, L.: Dust indicators and records of terrestrial and marine paleoenvironments. Pages Newsletter 7 (2), p. 6 (1999)
Liu, Z.; Jacob, R.; Kutzbach, J.; Harrison, S. P.; Anderson, J.: Monsoon impact on El Nino in the early Holocene. Pages Newsletter 7 (2), pp. 16 - 17 (1999)
Mahowald, N.; Kohfeld, K. E.; Hansson, M.; Balkanski, Y.; Harrison, S. P.; Prentice, I. C.; Schulz, M.; Rodhe, H.: Dust sources and deposition during the last glacial maximum and current climate: A comparison of model results with paleodata from ice cores and marine sediments. Journal of Geophysical Research: Atmospheres 104 (13), pp. 15895 - 15916 (1999)
Pinot, S.; Ramstein, G.; Harrison, S. P.; Prentice, I. C.; Guiot, J.; Stute, M.; Joussaume, S.: Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Climate Dynamics 15 (11), pp. 857 - 874 (1999)
Yu, G.; Xue, B.; Harrison, S. P.: Paleohydrology and paleoclimate as reflected in lake-level changes in China. Pages Newsletter 7 (2), pp. 11 - 12 (1999)
Bartlein, P. J.; Bengtsson, L.; Harrison, S. P.; Hostetler, S.; Hsü, K.; Qin, B.; Vassiljev, J.: Modelling lake behaviour: how can we use mechanistic models to further our understanding of the response of lakes to climate change? Paläoklimaforschung 25, pp. 169 - 177 (1998)
Battarbee, R. W.; Davydova, N.; Digerfeldt, G.; Eronen, M.; Gaillard, M.-J.; Gliemeroth, A.-K.; Hannon, G.; Harrison, S. P.; Hofmann, W.; Liew, P. M.et al.; Lotter, A. F.; Löffler, H.; Marciniak, B.; Smol, J. P.; Tarasov, P. E.: Biological records of climate change in lake sediments. Paläoklimaforschung 25, pp. 161 - 167 (1998)
Broström, A.; Coe, M.; Harrison, S. P.; Gallimore, R.; Kutzbach, J. E.; Foley, J.; Prentice, I. C.; Behling, P.: Land surface feedbacks and palaeomonsoons in northern Africa. Geophysical Research Letters 25 (19), pp. 3615 - 3618 (1998)
Harrison, S. P.; Jolly, D.; Laarif, F.; Abe-Ouchi, A.; Dong, B.; Herterich, K.; Hewitt, C.; Joussaume, S.; Kutzbach, J. E.; Mitchell, J.et al.; De Noblet, N.; Valdes, P.: Intercomparison of simulated global vegetation distributions in response to 6 kyr BP orbital forcing. Journal of Climate 11 (11), pp. 2721 - 2742 (1998)
Hoelzmann, P.; Jolly, D.; Harrison, S. P.; Laarif, F.; Bonnefille, R.; Pachur, H.-J.: Mid-Holocene land-surface conditions in northern Africa and the Arabian peninsula: A data set for the analysis of biogeophysical feedbacks in the climate system. Global Biogeochemical Cycles 12 (1), pp. 35 - 51 (1998)
Jolly, D.; Harrison, S. P.; Damnati, B.; Bonnefille, R.: Simulated climate and biomes of Africa during the late quaternary: comparison with pollen and lake status data. Quaternary Science Reviews 17 (6-7), pp. 629 - 657 (1998)
Kutzbach, J.; Gallimore, R.; Harrison, S. P.; Behling, P.; Selin, R.; Laarif, F.: Climate and biome simulations for the past 21,000 years. Quaternary Science Reviews 17 (6-7), pp. 473 - 506 (1998)
Prentice, I. C.; Harrison, S. P.; Jolly, D.; Guiot, J.: The climate and biomes of Europe at 6000 yr BP: Comparison of model simulations and pollen-based reconstructions. Quaternary Science Reviews 17 (6-7), pp. 659 - 668 (1998)
Qin, B. Q.; Harrison, S. P.; Kutzbach, J. E.: Evaluation of modelled regional water balance using lake status data: A comparison of 6 ka simulations with the NCAR CCM. Quaternary Science Reviews 17 (6-7), pp. 535 - 548 (1998)
Tarasov, P. E.; Webb Iii, T.; Andreev, A. A.; Afanas'eva, N. B.; Berezina, N. A.; Bezusko, L. G.; Blyakharchuk, T. A.; Bolikhovskaya, N. S.; Cheddadi, R.; Chernavskaya, M. M.et al.; Chernova, G. M.; Dorofeyuk, N. I.; Dirksen, V. G.; Elina, G. A.; Filimonova, L. V.; Glebov, F. Z.; Guiot, J.; Gunova, V. S.; Harrison, S. P.; Jolly, D.; Khomutova, V. I.; Kvavadze, E. V.; Osipova, I. M.; Panova, N. K.; Prentice, I. C.; Saarse, L.; Sevastyanov, D. V.; Volkova, V. S.; Zernitskaya, V. P.: Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25 (6), pp. 1029 - 1053 (1998)
Vassiljev, J.; Harrison, S. P.; Guiot, J.: Simulating the Holocene lake-level record of Lake Bysjön, southern Sweden. Quaternary Research 49 (1), pp. 62 - 71 (1998)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.