Mahecha, M. D.; Gans, F.; Brandt, G.; Christiansen, R.; Cornell, S. E.; Fomferra, N.; Kraemer, G.; Peters, J.; Bodesheim, P.; Camps-Valls, G.et al.; Donges, J. F.; Dorigo, W.; Estupinan-Suarez, L. M.; Gutierrez-Velez, V. H.; Gutwin, M.; Jung, M.; Londoño, M. C.; Miralles, D. G.; Papastefanou, P.; Reichstein, M.: Earth system data cubes unravel global multivariate dynamics. Earth System Dynamics 11 (1), pp. 201 - 234 (2020)
García, Y. G.; Shadaydeh, M.; Mahecha, M. D.; Denzler, J.: Extreme anomaly event detection in biosphere using linear regression and a spatiotemporal MRF model. Natural Hazards 98 (3), pp. 849 - 867 (2019)
Babst, F.; Bodesheim, P.; Charney, N.; Friend, A. D.; Girardin, M. P.; Klesse, S.; Moore, D. J.P.; Seftigen, K.; Björklund, J.; Bouriaud, O.et al.; Dawson, A.; DeRose, R. J.; Dietze, M. C.; Eckes, A. H.; Enquist, B.; Frank, D. C.; Mahecha, M. D.; Poulter, B.; Record, S.; Trouet, V.; Turton, R. H.; Zhang, Z.; Evans, M. E.K.: When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews 197, pp. 1 - 20 (2018)
Flach, M.; Sippel, S.; Gans, F.; Bastos, A.; Brenning, A.; Reichstein, M.; Mahecha, M. D.: Contrasting biosphere responses to hydrometeorological extremes: revisiting the 2010 western Russian Heatwave. Biogeosciences 16, pp. 6067 - 6085 (2018)
Cremer, F.; Urbazaev, M.; Berger, C.; Mahecha, M. D.; Schmullius, C.; Thiel, a. C.: An image transform based on temporal decomposition. IEEE Geoscience and Remote Sensing Letters 15 (4), pp. 537 - 541 (2018)
Sippel, S.; El-Madany, T. S.; Migliavacca, M.; Mahecha, M. D.; Carrara, A.; Flach, M.; Kaminski, T.; Otto, F. E. L.; Thonicke, K.; Vossbeck, M.et al.; Reichstein, M.: Warm winter, wet spring, and an extreme response in ecosystem functioning on the Iberian Peninsula. Bulletin of the American Meteorological Society 99 (1), pp. S80 - S85 (2018)
von Buttlar, J.; Zscheischler, J.; Rammig, A.; Sippel, S.; Reichstein, M.; Knohl, A.; Jung, M.; Menzer, O.; Arain, M. A.; Buchmann, N.et al.; Cescatti, A.; Gianelle, D.; Kieley, G.; Law, B. E.; Magliulo, V.; Margolis, H.; McCaughey, H.; Merbold, L.; Migliavacca, M.; Montagnani, L.; Oechel, W.; Pavelka, M.; Peichl, M.; Rambal, S.; Raschi, A.; Scott, R. L.; Vaccari, F. P.; van Gorsel, E.; Varlagin, A.; Wohlfahrt, G.; Mahecha, M. D.: Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences 15 (5), pp. 1293 - 1318 (2018)
Wu, X.; Liu, H.; Li, X.; Tian, Y.; Mahecha, M. D.: Responses of winter wheat yields to warming-mediated vernalization variations across temperate Europe. Frontiers in Ecology and Evolution 5, 126 (2017)
Sippel, S.; Forkel, M.; Rammig, A.; Thonicke, K.; Flach, M.; Heimann, M.; Otto, F. E. L.; Reichstein, M.; Mahecha, M. D.: Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environmental Research Letters 12 (7), 075006 (2017)
Sierra, C.; Mahecha, M. D.; Poveda, G.; Álvarez-Dávila, E.; Gutierrez-Velez, V. H.; Reuf, B.; Feilhauer, H.; Anáya, J.; Armenteras, D.; Benavides, A. M.et al.; Buendiak, C.; Duque, Á.; Estupinan-Suarez, L. M.; González, C.; Gonzalez-Caro, S.; Jimenez, R.; Kraemer, G.; Londoño, M. C.; Orrego, S. A.; Posada, J. M.; Ruiz-Carrascalo, D.; Skowronek, S.: Monitoring ecological change during rapid socio-economic and political transitions: Colombian ecosystems in the post-conflict era. Environmental Science and Policy 76, pp. 40 - 49 (2017)
Mathieu, P.-P.; Borgeaud, M.; Desnons Rast M., Y.-L.; Brockmann, C.; See, L.; Fritz, S.; Kapur, R.; Mahecha, M. D.; Benz, U.: The ESA's Earth Observation Open Science Program. IEEE Geoscience and Remote Sensing Magazine 5 (2), pp. 86 - 96 (2017)
Sippel, S.; Zscheischler, J.; Mahecha, M. D.; Orth, R.; Reichstein, M.; Vogel, M.; Seneviratne, S. I.: Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics. Earth System Dynamics 8 (2), pp. 387 - 403 (2017)
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
The new research project "PollenNet" aims to use artificial intelligence to accurately predict the spread of pollen. In order to improve allergy prevention, experts are bringing together the latest interdisciplinary findings from a wide range of fields.
If rivers overflow their banks, the consequences can be devastating. Using methods of explainable machine learning, researchers at the Helmholtz Centre for Environmental Research (UFZ) have shown that floods are more extreme when several factors are involved in their development.