Bela, M. M.; Longo, K. M.; Freitas, S. R.; Moreira, D. S.; Beck, V.; Wofsy, S. C.; Gerbig, C.; Wiedemann, K.; Andreae, M. O.; Artaxo, P.: Ozone production and transport over the Amazon Basin during the dry-to-wet and wet-to-dry transition seasons. Atmospheric Chemistry and Physics 15, pp. 757 - 782 (2015)
Beck, V.; Gerbig, C.; Koch, T.; Bela, M.M.; Longo, K.M.; Freitas, S.R.; Kaplan, J.O.; Prigent, C.; Bergamaschi, P.; Heimann, M.: WRF-Chem simulations in the Amazon region during wet and dry season transitions: evaluation of methane models and wetland inundation maps. Atmospheric Chemistry and Physics 13, pp. 7961 - 7982 (2012)
Beck, V.; Chen, H.; Gerbig, C.; Bergamaschi, P.; Bruhwiler, L.; Houweling, S.; Rockmann, T.; Kolle, O.; Steinbach, J.; Koch, T.et al.; Sapart, C. J.; van der Veen, C.; Frankenberg, C.; Andreae, M. O.; Artaxo, P.; Longo, K. M.; Wofsy, S. C.: Methane airborne measurements and comparison to global models during BARCA. Journal of Geophysical Research: Atmospheres 117, D15310 (2012)
Andreae, M. O.; Artaxo, P.; Beck, V.; Bela, M.; Freitas, S.; Gerbig, C.; Longo, K.; Munger, J. W.; Wiedemann, K. T.; Wofsy, S. C.: Carbon monoxide and related trace gases and aerosols over the Amazon Basin during the wet and dry seasons. Atmospheric Chemistry and Physics 12 (13), pp. 6041 - 6065 (2012)
Pillai, D.; Gerbig, C.; Kretschmer, R.; Beck, V.; Karstens, U.; Neininger, B.; Heimann, M.: Comparing Lagrangian and Eulerian models for CO2 transport - a step towards Bayesian inverse modeling using WRF/STILT-VPRM. Atmospheric Chemistry and Physics 12, pp. 8979 - 8991 (2012)
Chen, H.; Winderlich, J.; Gerbig, C.; Höfer, A.; Rella, C. W.; Crosson, E. R.; Van Pelt, A. D.; Steinbach, J.; Kolle, O.; Beck, V.et al.; Daube, B. C.; Gottlieb, E. W.; Chow, V. Y.; Santoni, G. W.; Wofsy, S. C.: High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmospheric Measurement Techniques 3 (2), pp. 375 - 386 (2010)
Beck, V.: Determination of the methane budget of the Amazon region utilizing airborne methane observations in combination with atmospheric transport and vegetation modeling. Dissertation, Friedrich-Schiller-Universität, Jena (2012)
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.