Metz, E.-M.; Vardag, S. N.; Basu, S.; Jung, M.; Butz, A.: Seasonal and interannual variability in CO2 fluxes in southern Africa seen by GOSAT. Biogeosciences 22 (2), pp. 555 - 584 (2025)
Mauder, M.; Jung, M.; Stoy, P.; Nelson, J. A.; Wanner, L.: Energy balance closure at FLUXNET sites revisited. Agricultural and Forest Meteorology 358, 110235 (2024)
Pallandt, M.; Jung, M.; Arndt, K. A.; Natali, S. M.; Rogers, B.; Virkkala, A.-M.; Göckede, M.: High-latitude eddy covariance temporal network design and optimization. Journal of Geophysical Research: Biogeosciences 129 (19), e2024JG008406 (2024)
Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W. R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S.: Majority of global river flow sustained by groundwater. Nature Geoscience 17, pp. 770 - 777 (2024)
Wanner, L.; Jung, M.; Paleri, S.; Butterworth, B. J.; Desai, A. R.; Sühring, M.; Mauder, M.: Towards energy-balance closure with a model of dispersive heat fluxes. Boundary-Layer Meteorology 190, 25 (2024)
Zhang, W.; Nelson, J. A.; Miralles, D. G.; Mauder, M.; Migliavacca, M.; Poyatos, R.; Reichstein, M.; Jung, M.: A new post-hoc method to reduce the energy imbalance in eddy covariance measurements. Geophysical Research Letters 51 (2), e2023GL107084 (2024)
Kunik, L.; Raczka, B.; Smith, K. R.; Bowling, D.; Frankenberg, C.; Köhler, P.; Cheng, R.; Goulden, M. L.; Jung, M.; Lin, J. C.: Satellite-based solar-induced fluorescence tracks seasonal and elevational patterns of photosynthesis in California's Sierra Nevada mountains. Environmental Research Letters 19 (1), 014008 (2024)
Trautmann, T.; Koirala, S.; Guentner, A.; Kim, H.; Jung, M.: Calibrating global hydrological models with GRACE TWS: does river storage matter? Environmental Research Communications 5 (8), 081005 (2023)
Metz, E.-M.; Vardag, S. N.; Basu, S.; Jung, M.; Ahrens, B.; El-Madany, T. S.; Sitch, S.; Arora, V. K.; Briggs, P. R.; Friedlingstein, P.et al.; Goll, D. S.; Jain, A. K.; Kato, E.; Lombardozzi, D.; Nabel, J. E. M. S.; Poulter, B.; Séférian, R.; Tian, H.; Wiltshire, A.; Yuan, W.; Yue, X.; Zaehle, S.; Deutscher, N. M.; Griffith, D. W. T.; Butz, A.: Soil respiration–driven CO2 pulses dominate Australia’s flux variability. Science 379, 6639, pp. 1332 - 1335 (2023)
Zhang, W.; Jung, M.; Migliavacca, M.; Poyatos, R.; Miralles, D. G.; El-Madany, T. S.; Galvagno, M.; Carrara, A.; Arriga, N.; Ibrom, A.et al.; Mammarella, I.; Papale, D.; Cleverly, J. R.; Liddell, M.; Wohlfahrt, G.; Markwitz, C.; Mauder, M.; Paul-Limoges, E.; Schmidt, M.; Wolf, S.; Brümmer, C.; Arain, M. A.; Fares, S.; Kato, T.; Ardö, J.; Oechel, W.; Hanson, C.; Korkiakoski, M.; Biraud, S.; Steinbrecher, R.; Billesbach, D.; Montagnani, L.; Woodgate, W.; Shao, C.; Carvalhais, N.; Reichstein, M.; Nelson, J. A.: The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Agricultural and Forest Meteorology 330, 109305 (2023)
Henry, R. C.; Arneth, A.; Jung, M.; Rabin, S. S.; Rounsevell, M. D.; Warren, F.; Alexander, P.: Global and regional health and food security under strict conservation scenarios. Nature Sustainability 5, pp. 303 - 310 (2022)
Kraft, B.; Jung, M.; Körner, M.; Koirala, S.; Reichstein, M.: Towards hybrid modeling of the global hydrological cycle. Hydrology and Earth System Sciences 26 (6), pp. 1579 - 1614 (2022)
Küçük, Ç.; Koirala, S.; Carvalhais, N.; Miralles, D.; Reichstein, M.; Jung, M.: Characterizing the response of vegetation cover to water limitation in Africa using geostationary satellites. Journal of Advances in Modeling Earth Systems 14 (3), e2021MS002730 (2022)
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.