Kuhn, T. K.; Krull, E. S.; Bowater, A.; Grice, K.; Gleixner, G.: The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Organic Geochemistry 41 (2), S. 88 - 95 (2010)
Reiche, M.; Gleixner, G.; Kusel, K.: Effect of peat quality on microbial greenhouse gas formation in an acidic fen. Biogeosciences 7 (1), S. 187 - 198 (2010)
Sachse, D.; Gleixner, G.; Wilkes, H.; Kahmen, A.: Leaf wax n-alkane δ D values of field-grown barley reflect leaf water δD values at the time of leaf formation. Geochimica et Cosmochimica Acta 74 (23), S. 6741 - 6750 (2010)
Thoms, C.; Gattinger, A.; Jacob, M.; Thomas, F. M.; Gleixner, G.: Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry 42 (9), S. 1558 - 1565 (2010)
Baum, C.; Fienemann, M.; Glatzel, S.; Gleixner, G.: Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. Forest Ecology and Management 258 (2), S. 109 - 114 (2009)
Bol, R.; Poirier, N.; Balesdent, J.; Gleixner, G.: Molecular turnover time of soil organic matter in particle-size fractions of an arable soil. Rapid Communications in Mass Spectrometry 23 (16), S. 2551 - 2558 (2009)
Klumpp, K.; Fontaine, S.; Attard, E.; Le Roux, X.; Gleixner, G.; Soussana, J. F.: Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. Journal of Ecology 97 (5), S. 876 - 885 (2009)
Richter, A.; Wanek, W.; Werner, R. A.; Ghashghaie, J.; Jaggi, M.; Gessler, A.; Brugnoli, E.; Hettmann, E.; Gottlicher, S. G.; Salmon, Y.et al.; Bathellier, C.; Kodama, N.; Nogues, S.; S¢E, A.; Volders, F.; Sorgel, K.; Blochl, A.; Siegwolf, R. T. W.; Buchmann, N.; Gleixner, G.: Preparation of starch and soluble sugars of plant material for the analysis of carbon isotope composition: a comparison of methods. Rapid Communications in Mass Spectrometry 23 (16), S. 2476 - 2488 (2009)
Rubino, M.; Lubritto, C.; D'onofrio, A.; Terrasi, F.; Kramer, C.; Gleixner, G.; Cotrufo, M. F.: Isotopic evidences for microbiologically mediated and direct C input to soil compounds from three different leaf litters during their decomposition. Environmental Chemistry Letters 7 (1), S. 85 - 95 (2009)
Sachse, D.; Kahmen, A.; Gleixner, G.: Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus). Organic Geochemistry 40 (6), S. 732 - 742 (2009)
Xia, Z. H.; Xu, B. Q.; Mügler, I.; Wu, G. J.; Gleixner, G.; Sachse, D.; Zhu, L. P.: retracted: Paleoclimatic implications of the hydrogen isotopic composition of terrigenous n-alkanes from Lake Yamzho, southern Tibetan Plateau. Geochemical Journal 43 (4), S. 275 - 286 (2009)
Habekost, M.; Eisenhauer, N.; Scheu, S.; Steinbeiss, S.; Weigelt, A.; Gleixner, G.: Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment. Soil Biology and Biochemistry 40 (10), S. 2588 - 2595 (2008)
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
Die Kohlenstoffspeicherung im Boden kann dazu beitragen, den Klimawandel abzumildern. Eine neue Studie zeigt, dass die Bildung mineralgebundener organischer Substanz in erster Linie von der Mineralart abhängt, aber auch durch Landnutzung und Bewirtschaftungsintensität beeinflusst wird.
Das internationale Cabo-Verde-Atmosphären-Observatorium (CVAO) wird weiter ausgebaut: Der Präsident der Republik Cabo Verde José Maria Neves und Bundespräsident Frank-Walter Steinmeier legten am Donnerstag den Grundstein für ein neues Laborgebäude auf São Vicente, einer der Kapverdischen Inseln vor Afrika. Das Max-Planck-Institut für Biogeochemie war am Aufbau der Station beteiligt und führt seitdem am CVAO Langzeitmessungen u.a. der Treibhausgase Methan, Kohlendioxid und Lachgas durch.
Forscher der University of California und des Max-Planck-Instituts für Biogeochemie haben ein genaueres Modell des globalen Kohlenstoffkreislaufs entwickelt. Das Modell berücksichtigt besser, wie die Ökosysteme der Landoberfläche zu den atmosphärischen Konzentrationen des Treibhausgases Kohlendioxid beitragen.
Kohlenstoffsenken der Landoberfläche mildern den Treibhauseffekt. Ein internationales Team von Wissenschaftler*innen hat nun ermittelt, dass der überwiegende Teil der gesamten oberirdischen Kohlenstoffspeicherung in Europa durch die Wälder Osteuropas erfolgt. Vor allem durch die veränderte Landnutzung ist diese Kohlenstoffsenke jedoch zurückgegangen.
Eine neue Studie zeigt, dass die Effizienz der mikrobiellen Kohlenstoffnutzung mindestens viermal stärker als andere biologische Faktoren oder Umweltbedingungen die globale Speicherung und Verteilung von Kohlenstoff im Boden beeinflusst.