Flessa, H.; Amelung, W.; Helfrich, M.; Wiesenberg, G. L. B.; Gleixner, G.; Brodowski, S.; Rethemeyer, J.; Kramer, C.; Grootes, P. M.: Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. Journal of Plant Nutrition and Soil Science 171 (1), S. 36 - 51 (2008)
Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P. M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.et al.; Kaiser, K.; Kalbitz, K.; Kramer, C.; Leinweber, P.; Rethemeyer, J.; Schaeffer, A.; Schmidt, M. W. I.; Schwark, L.; Wiesenberg, G. L. B.: How relevant is recalcitrance for the stabilization of organic matter in soils? Journal of Plant Nutrition and Soil Science 171 (1), S. 91 - 110 (2008)
Kramer, C.; Gleixner, G.: Variable use of plant- and soil-derived carbon by microorganisms in agricultural soils. Soil Biology and Biochemistry 38 (11), S. 3267 - 3278 (2006)
Kramer, C.; Kreisel, G.; Fahr, K.; Käßbohrer, J.; Schlosser, D.: Degradation of 2-fluorophenol by the brown-rot fungus Gloeophyllum striatum: evidence for the involvement of extracellular Fenton chemistry. Applied Microbiology and Biotechnology 64 (3), S. 387 - 395 (2004)
Rethemeyer, J.; Grootes, P. M.; Bruhn, F.; Andersen, N.; Nadeau, M. J.; Kramer, C.; Gleixner, G.: Age heterogeneity of soil organic matter. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 223-224, S. 521 - 527 (2004)
Gleixner, G.; Kramer, C.; Hahn, V.; Sachse, D.: The effect of biodiversity on carbon storage in soils. In: Forest diversity and function: temperate and boreal systems, Bd. 176, S. 165 - 183 (Hg. Scherer-Lorenzen, M.; Körner, C.; Schulze, E. D.). Springer, Berlin (2005)
Gleixner, G.; Czimczik, C. I.; Kramer, C.; Lühker, B.; Schmidt, M. W. I.: Plant compounds and their turnover and stability as soil organic matter. In: Global biogeochemical cycles in the climate system, S. 201 - 215 (Hg. Schulze, E.-D.; Heimann, M.; Harrison, S. P.; Holland, E.; Lloyd, J. et al.). Academic Press, San Diego (2001)
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Häufigere starke Stürme zerstören immer größere Flächen des Amazonas-Regenwalds. Sturmschäden zwischen 1985 und 2020 wurden kartiert. Die Gesamtfläche der betroffenen Wälder hat sich in diesem Zeitraum etwa vervierfacht.
Im alljährlichen Ranking der weltweit meistzitierten und damit einflussreichen Wissenschaftler*innen sind 2024 erneut fünf Autoren unseres Instituts vertreten.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
Eine Studie der Universität Leipzig, des Deutschen Zentrums für integrative Biodiversitätsforschung Halle-Jena-Leipzig (iDiv) und des MPI für Biogeochemie zeigt, dass Lücken im Kronendach eines Auenmischwalds einen direkten Einfluss auf die Temperatur und Feuchtigkeit im Waldboden haben, jedoch nur geringe Auswirkungen auf die Bodenaktivität.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Tropenwäldern werden durch menschliche Einflüsse kontinuierlich fragmentiert und geschädigt werden. Mittels Fernerkundungsdaten und modernsten Methoden der Datenanalyse können Forschende nun erstmalig zeigen, dass die Auswirkungen dieser Schädigung größer sind als bisher angenommen.
Am 24. Juni erhielt Prof. Dr. Henrik Hartmann, Institutsleiter des Julius Kühn-Instituts für Waldschutz und ehemaliger Gruppenleiter am Max-Planck-Institut für Biogeochemie, eine wichtige Auszeichnung für seine wissenschaftliche Leistung im Forstbereich. Wir gratulieren herzlich!
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.