Ruiz-Erazo, C. E.; Riascos-Acosta, R. I.; Guerrero-Martínez, E. S.; Marín-Vélez, A. M.; Sierra, C.; Ramírez-Correa, J. A.: Carbon sequestration potential in Retrophyllum rospigliosii (Pilg.) C. N. Page plantations for restoration purposes in the Colombian Andean region. Revista Chapingo Serie Ciencias Forestales y del Ambiente 91, e24009 (2025)
Chanca, I.; Levin, I.; Trumbore, S. E.; Macario, K.; Lavrič, J. V.; Quesada, C. A.; de Araújo, A. C.; Dias Júnior, C. Q.; van Asperen, H.; Hammer, S.et al.; Sierra, C.: How long does carbon stay in a near-pristine central Amazon forest? An empirical estimate with radiocarbon. Biogeosciences 22 (2), 472, S. 455 (2025)
Tangarife-Escobar, A.; Guggenberger, G.; Feng, X.; Munoz, E.; Chanca, I.; Peichl, M.; Smith, P.; Sierra, C.: Radiocarbon isotopic disequilibrium shows little incorporation of new carbon in mineral soils of a boreal forest ecosystem. Journal of Geophysical Research: Biogeosciences 129 (9), e2024JG008191 (2024)
von Fromm, S. F.; Hoyt, A. M.; Sierra, C.; Georgiou, K.; Doetterl, S.; Trumbore, S. E.: Controls and relationships of soil organic carbon abundance and persistence vary across pedo-climatic regions. Global Change Biology 30 (5), e17320 (2024)
Ramirez, J. A.; Craven, D.; Herrera-Ramirez, D.; Posada, J. M.; Reu, B.; Sierra, C. A.; Hoch, G.; Handa, I. T.; Messier, C.: Non-structural carbohydrate concentrations in tree organs vary across biomes and leaf habits, but are independent of the fast-slow plant economic spectrum. Frontiers in Plant Science 15, 1375958 (2024)
Muñoz, E.; Chanca, I.; González-Sosa, M.; Sarquis, A.; Tangarife-Escobar, A.; Sierra, C.: On the importance of time in carbon sequestration in soils and climate change mitigation. Global Change Biology 30 (3), e17229 (2024)
Tangarife-Escobar, A.; Guggenberger, G.; Feng, X.; Dai, G.; Urbina-Malo, C.; Azizi-Rad, M.; Sierra, C. A.: Moisture and temperature effects on the radiocarbon signature of respired carbon dioxide to assess stability of soil carbon in the Tibetan Plateau. Biogeosciences 21 (5), S. 1277 - 1299 (2024)
Estupinan-Suarez, L. M.; Mahecha, M. D.; Brenning, A.; Kraemer, G.; Poveda, G.; Reichstein, M.; Sierra, C.: Spatial patterns of vegetation activity related to ENSO in Northern South America. Journal of Geophysical Research: Biogeosciences 129 (1), e2022JG007344 (2024)
Sierra, C.; Ahrens, B.; Bolinder, M. A.; Braakhekke, M. C.; von Fromm, S. F.; Kätterer, T.; Luo, Z.; Parvin, N.; Wang, G.: Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation. Global Change Biology 30 (1), e17153 (2024)
Munoz, E.; Chanca, I.; Sierra, C.: Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Global Change Biology 29 (23), S. 6441 - 6452 (2023)
Eglinton, T. I.; Graven, H. D.; Raymond, P. A.; Trumbore, S. E.; Aluwihare, L.; Bard, E.; Basu, S.; Friedlingstein, P.; Hammer, S.; Lester, J.et al.; Sanderman, J.; Schuur, E. A. G.; Sierra, C. A.; Synal, H.-A.; Turnbull, J. C.; Wacker, L.: Making the case for an International Decade of Radiocarbon. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230081 (2023)
Munoz, E.; Sierra, C. A.: Deterministic and stochastic components of atmospheric CO2 inside forest canopies and consequences for predicting carbon and water exchange. Agricultural and Forest Meteorology 341, 109624 (2023)
Stoner, S.; Trumbore, S. E.; González-Pérez, J. A.; Schrumpf, M.; Sierra, C. A.; Hoyt, A. M.; Chadwick, O.; Doetterl, S.: Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230139 (2023)
Stoner, S.; Schrumpf, M.; Hoyt, A. M.; Sierra, C. A.; Doetterl, S.; Galy, V.; Trumbore, S. E.: How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences 20 (15), S. 3151 - 3163 (2023)
Sarquis, A.; Sierra, C. A.: Information content in time series of litter decomposition studies and the transit time of litter in arid lands. Biogeosciences 20 (9), S. 1759 - 1771 (2023)
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Häufigere starke Stürme zerstören immer größere Flächen des Amazonas-Regenwalds. Sturmschäden zwischen 1985 und 2020 wurden kartiert. Die Gesamtfläche der betroffenen Wälder hat sich in diesem Zeitraum etwa vervierfacht.
Im alljährlichen Ranking der weltweit meistzitierten und damit einflussreichen Wissenschaftler*innen sind 2024 erneut fünf Autoren unseres Instituts vertreten.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
Eine Studie der Universität Leipzig, des Deutschen Zentrums für integrative Biodiversitätsforschung Halle-Jena-Leipzig (iDiv) und des MPI für Biogeochemie zeigt, dass Lücken im Kronendach eines Auenmischwalds einen direkten Einfluss auf die Temperatur und Feuchtigkeit im Waldboden haben, jedoch nur geringe Auswirkungen auf die Bodenaktivität.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Tropenwäldern werden durch menschliche Einflüsse kontinuierlich fragmentiert und geschädigt werden. Mittels Fernerkundungsdaten und modernsten Methoden der Datenanalyse können Forschende nun erstmalig zeigen, dass die Auswirkungen dieser Schädigung größer sind als bisher angenommen.
Am 24. Juni erhielt Prof. Dr. Henrik Hartmann, Institutsleiter des Julius Kühn-Instituts für Waldschutz und ehemaliger Gruppenleiter am Max-Planck-Institut für Biogeochemie, eine wichtige Auszeichnung für seine wissenschaftliche Leistung im Forstbereich. Wir gratulieren herzlich!
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.