Peng, T. H.; Broecker, W. S.; Freyer, H. D.; Trumbore, S. E.: A deconvolution of the tree-ring based delta-13C record. Journal of Geophysical Research: Atmospheres 88 (NC6), S. 3609 - 3620 (1983)
Schuur, E. A.G.; Druffel, E. R.M.; Trumbore, S. E. (Hg.): Radiocarbon and Global Change: Mechanisms, Applications and Laboratory Techniques. Springer, Cham (2016), 315 S.
Rapalee, G.; Davidson, E. A.; Harden, J. W.; Trumbore, S. E.; Veldhuis, H.; Saf, S. A. F.: Mapping drainage patterns and carbon stocks of boreal forest soils in northern Manitoba. Soc Amer Foresters, Washington (1996), 414-415 S.
Schuur, E. A. G.; Trumbore, S. E.; Druffel, E. R. M.; Southon, J. R.; Steinhof, A.; Taylor, R. E.; Turnbull, J. C.: Radiocarbon and the global carbon cycle. In: Radiocarbon and Global Change, S. 1 - 20 (Hg. Schuur, E. A. G.; Druffel, E. R. M.; Trumbore, S. E.). Springer, Cham (2016)
Trumbore, S. E.; Sierra, C.; Pries, C. E. H.: Radiocarbon nomenclature, theory, models, and interpretation: measuring age, determing cycling rates, and tracing source pools. In: Radiocarbon and Global Change, S. 45 - 82 (Hg. Schuur, E. A. G.; Druffel, E. R. M.; Trumbore, S. E.). Springer, Cham (2016)
Trumbore, S. E.; Xu, X.; Santos, G. M.; Czimczik, C. I.; Beaupré, S. R.; Pack, M. A.; Hopkins, F. M.; Stills, A.; Lupascu, M.; Ziolkowski, L.: Preparation for radiocarbon analysis. In: Radiocarbon and Global Change, S. 279 - 315 (Hg. Schuur, E. A. G.; Druffel, E. R. M.; Trumbore, S. E.). Springer, Cham (2016)
Trumbore, S. E.; Camargo, P. B. D.: Soil Carbon Dynamics. In: Amazonia and Global Change, Bd. 186, S. 451 - 462 (Hg. Keller, M.; Bustamante, M.; Gash, J.; Dias, P. S.) (2009)
Asman, W. A. H.; Andreae, M. O.; Conrad, R.; Denmead, O. T.; Ganzeveld, L. N.; Helder, W.; Kaminski, T.; Sofiev, M. A.; Trumbore, S. E.: Working group report how can fluxes of trace gases be validated between different scales? In: Approaches to Scaling of Trace Gas Fluxes in Ecosystems, S. 87 - 97 (Hg. Bouwman, A. F.). Elsevier Science Bv, Amsterdam (1998)
Trumbore, S. E.: Role of isotopes and tracers in scaling trace gas fluxes. In: Approaches to Scaling of Trace Gas Fluxes in Ecosystems, S. 259 - 274 (Hg. Bouwman, A. F.). Elsevier Science Bv, Amsterdam (1998)
Aravena, R.; Schiff, S. L.; Warner, B.; Devito, K.; Trumbore, S. E.: Application of environmental isotopes in hydrological and geochemical studies in wetlands. In: Isotopes in Water Resources Management, Bd. 1, S. 361 - 363. Int Atomic Energy Agency, Vienna (1996)
Post, W. M.; Anderson, D. W.; Dahmke, A.; Houghton, R. A.; Huc, A. Y.; Lassiter, R.; Najjar, R. G.; Neue, H. U.; Pedersen, T. F.; Trumbore, S. E.et al.; Vaikmae, R.: Group report: What is the role of nonliving organic matter cycling on the global scale? In: Role of Nonliving Organic Matter in the Earth's Carbon Cycle, S. 155 - 174 (Hg. Zepp, R. G.; Sonntag, C.). John Wiley & Sons Ltd, Chichester (1995)
Trumbore, S. E.; Druffel, E. R. M.: Carbon isotopes for characterizing sources and turnover of nonliving organic matter. In: Role of Nonliving Organic Matter in the Earth's Carbon Cycle, S. 7 - 22 (Hg. Zepp, R. G.; Sonntag, C.). John Wiley & Sons Ltd, Chichester (1995)
Trumbore, S. E.; Barros, A. P.; Becker, T. W.; Davidson, E. A.; Ehlmann, B. L.; Gruber, N.; Hofmann, E. E.; Hudson, M. K.; Illangasekare, T. H.; Kang, S.et al.; Montanari, A.; Nimmo, F.; Parsons, T.; Salters, V. J. M.; Schimel, D.; Stevens, B.; Wuebbles, D. J.; Zeitler, P.; Zhu, T.: Thank you to our 2021 peer reviewers, AGU Advances 3, (2022)
Trumbore, S. E.; Barros, A. P.; Becker, T. W.; Davidson, E. A.; Ehlmann, B. L.; Gruber, N.; Hofmann, E.; Hudson, M. K.; Illangasekare, T. H.; Kang, S.et al.; Malanotte-Rizzoli, P.; Montanari, A.; Nimmo, F.; Parsons, T.; Salters, V. J. M.; Schimel, D.; Stevens, B.; Wuebbles, D. J.; Zeitler, P.; Zhu, T.: Thank you to our 2020 peer reviewers, AGU Advances 2, (2021)
Dank FLUXCOM-X, der nächsten Generation Daten-getriebener, KI-basierter Erdsystemmodelle, können Forschende den Stoffwechsel der Erde nun in noch nie dagewesener Detailtiefe sehen – überall an Land und zu jeder Stunde des Tages.
Im alljährlichen Ranking der weltweit meistzitierten und damit einflussreichen Wissenschaftler*innen sind 2024 erneut fünf Autoren unseres Instituts vertreten.
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Eine aktuelle Studie deutet darauf hin, dass nicht zunehmende Dürren in den Tropen und veränderte Reaktionen des Kohlenstoffkreislaufs aufgrund des Klimawandels für die starke Reaktion der Tropen auf steigenden Temperaturen verantwortlich sind. Stattdessen könnten wenige aber besonders starke El Niño- Ereignisse dafür verantwortlich sein.
EU fördert internationales Forschungsprojekt AI4PEX, um Erdsystemmodelle und damit wissenschaftliche Vorhersagen des Klimawandels weiter zu verbessern. Beteiligte Wissenschaftler*innen aus 9 Ländern trafen sich bereits Ende Mai 2024 zum Projektstart am federführenden MPI für Biogeochemie in Jena.
Stickstoffdünger und Stickoxide aus fossilen Brennstoffen belasten die Luft und das Trinkwasser, führen zur Überdüngung von Gewässern und Landökosystemen, reduzieren die Artenvielfalt und schädigen die Ozonschicht. Was das Klima angeht, haben sie unter dem Strich aber eine kühlende Wirkung.
Die anthropogenen Emissionen von Lachgas (N2O), ein pro Molekül deutlich stärkeres Treibhausgas als Kohlenstoffdioxid oder Methan, stiegen zwischen 1980 und 2020 um etwa 40% an. Im Jahr 2020 erreichten die anthropogenen Emissionen in die Atmosphäre mehr als 10 Millionen Tonnen pro Jahr, so der neue Bericht „Global Nitrous Oxide Budget 2024“ des Global Carbon Project.
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Eine Tonne CO2 aus der Luft holen und so eine Tonne Emissionen ungeschehen machen? Haut nicht hin, sagt eine Studie. Und liefert vier Einwände mit Blick auf die Erdsysteme.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
Die Kohlenstoffspeicherung im Boden kann dazu beitragen, den Klimawandel abzumildern. Eine neue Studie zeigt, dass die Bildung mineralgebundener organischer Substanz in erster Linie von der Mineralart abhängt, aber auch durch Landnutzung und Bewirtschaftungsintensität beeinflusst wird.