Lehnert, A.-S.; Cooper, R. E.; Ignatz, R.; Ruecker, A.; Gomes-Alves, E.; Küsel, K.; Pohnert, G.; Trumbore, S. E.: Dimethyl sulfide emissions from a peatland result more from organic matter degradation than sulfate reduction. Journal of Geophysical Research: Biogeosciences 129 (1), e2023JG007449 (2024)
Tanunchai, B.; Ji, L.; Schroeter, S. A.; Wahdan, S. F. M.; Hossen, S.; Delelegn, Y.; Buscot, F.; Lehnert, A.-S.; Alves, E. G.; Hilke, I.et al.; Gleixner, G.; Schulze, E. D.; Noll, M.; Purahong, W.: FungalTraits vs. FUNGuild: Comparison of ecological functional assignments of leaf‑ and needle‑associated fungi across 12 temperate tree species. Fungal Biology 85, pp. 411 - 428 (2023)
Tanunchai, B.; Ji, L.; Schroeter, S. A.; Wahdan, S. F. M.; Larpkern, P.; Lehnert, A.-S.; Alves, E. G.; Gleixner, G.; Schulze, E. D.; Noll, M.et al.; Buscot, F.; Purahong, W.: A poisoned apple: First insights into community assembly and networks of the fungal pathobiome of healthy-looking senescing leaves of temperate trees in mixed forest ecosystem. Frontiers in Plant Science 13, 968218 (2022)
Tanunchai, B.; Schroeter, S. A.; Ji, L.; Wahdan, S. F. M.; Hossen, S.; Lehnert, A.-S.; Grünberg, H.; Gleixner, G.; Buscot, F.; Schulze, E. D.et al.; Noll, M.; Purahong, W.: More than you can see: Unraveling the ecology and biodiversity of lichenized fungi associated with leaves and needles of 12 temperate tree species using high-throughput sequencing. Frontiers in Microbiology 13, 907531 (2022)
Tanunchai, B.; Juncheed, K.; Wahdan, S. F. M.; Guliyev, V.; Udovenko, M.; Lehnert, A.-S.; Alves, E. G.; Glaser, B.; Noll, M.; Buscot, F.et al.; Blagodatskaya, E.; Purahong, W.: Analysis of microbial populations in plastic-soil systems after exposure to high poly(butylene succinate-co-adipate) load using high-resolution molecular technique. Environmental sciences Europe 33, 105 (2021)
Lehnert, A.-S.; Perreca, E.; Gershenzon, J.; Pohnert, G.; Trumbore, S. E.: Simultaneous real-time measurement of isoprene and 2-methyl-3-buten-2-ol emissions from trees using SIFT-MS. Frontiers in Plant Science 11, 578204 (2020)
Lehnert, A.-S.: Dynamics in production and emission of volatile organic compounds from soil, leaves and litter. Dissertation, Friedrich Schiller University Jena, Jena (2021)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.