Dittmann, G.; Ding, S.; Hopmans, E. C.; Schröter, S. A.; Orme, A. M.; Kothe, E.; Lange, M.; Gleixner, G.: Bioavailable carbon additions to soil promote free-living nitrogen fixation and microbial biomass growth with N-free lipids. Soil Biology and Biochemistry 203, 109748 (2025)
Schroeter, S. A.; Orme, A. M.; Lehmann, K.; Lehmann, R.; Chaudhari, N. M.; Küsel, K.; Wang, H.; Hildebrandt, A.; Totsche, K. U.; Trumbore, S. E.et al.; Gleixner, G.: Hydroclimatic extremes threaten groundwater quality and stability. Nature Communications 16, 720 (2025)
Nonthijun, P.; Tanunchai, B.; Schröter, S. A.; Wahdan, S. F. M.; Alves, E. G.; Hilke, I.; Buscot, F.; Schulze, E. D.; Disayathanoowat, T.; Purahong, W.et al.; Noll, M.: Feels like home: A biobased and biodegradable plastic offers a novel habitat for diverse plant pathogenic fungi in temperate forest ecosystems. Microbial Ecology 87, 155 (2024)
Lange, D. F.; Schröter, S. A.; da Luz, F. M.; Pires, E.; Santos, Y. R.; da Silva, J. S.; Hildmann, S.; Hoffmann, T.; Ferreira, S. J. F.; Schäfer, T.et al.; Quesada, C. A.; Simon, C.; Gleixner, G.: Cycling of dissolved organic nutrients and indications for nutrient limitations in contrasting Amazon rainforest ecosystems. Biogeochemistry 167, pp. 1567 - 1588 (2024)
Huang, C.; Schroeter, S. A.; Lehmann, K.; Herrmann, M.; Totsche, K. U.; Gleixner, G.: Snowmelt seepage fluxes of dissolved organic matter in forest and grassland – a molecular-level case study from the Hainich Critical Zone Exploratory, Germany. Frontiers in Earth Science 12, 1458322 (2024)
Tanunchai, B.; Ji, L.; Schroeter, S. A.; Wahdan, S. F. M.; Hossen, S.; Delelegn, Y.; Buscot, F.; Lehnert, A.-S.; Alves, E. G.; Hilke, I.et al.; Gleixner, G.; Schulze, E. D.; Noll, M.; Purahong, W.: FungalTraits vs. FUNGuild: Comparison of ecological functional assignments of leaf‑ and needle‑associated fungi across 12 temperate tree species. Fungal Biology 85, pp. 411 - 428 (2023)
Tanunchai, B.; Schroeter, S. A.; Ji, L.; Wahdan, S. F. M.; Hossen, S.; Lehnert, A.-S.; Grünberg, H.; Gleixner, G.; Buscot, F.; Schulze, E. D.et al.; Noll, M.; Purahong, W.: More than you can see: Unraveling the ecology and biodiversity of lichenized fungi associated with leaves and needles of 12 temperate tree species using high-throughput sequencing. Frontiers in Microbiology 13, 907531 (2022)
Benk, S.; Yan, L.; Lehmann, R.; Roth, V.-N.; Schwab, V. F.; Totsche, K. U.; Küsel, K.; Gleixner, G.: Fueling diversity in the subsurface: Composition and age of dissolved organic matter in the critical zone. Frontiers in Earth Science 7, 296 (2019)
Benk, S.: Towards a Data-Driven Understanding of Dissolved Organic Matter in the Critical Zone. Dissertation, Friedrich Schiller University Jena, Jena (2021)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.