Göckede, M.; Kwon, M. J.; Kittler, F.; Heimann, M.; Zimov, N.; Zimov, S.: Negative feedback processes following drainage slow down permafrost degradation. Global Change Biology 25 (10), S. 3254 - 3266 (2019)
Kwon, M. J.; Natali, S. M.; Pries, C. E. H.; Schuur, E. A. G.; Steinhof, A.; Crummer, K. G.; Zimov, N.; Zimov, S. A.; Heimann, M.; Kolle, O.et al.; Göckede, M.: Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems. Global Change Biology 25 (4), S. 1315 - 1325 (2019)
Kwon, M. J.; Jung, J. Y.; Tripathi, B. M.; Göckede, M.; Lee, Y. K.; Kim, M.: Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic. Journal of Microbiology 57 (5), S. 325 - 336 (2019)
Göckede, M.; Kittler, F.; Kwon, M. J.; Burjack, I.; Heimann, M.; Kolle, O.; Zimov, N.; Zimov, S.: Shifted energy fluxes, increased Bowen ratios, and reduced thaw depths linked with drainage-induced changes in permafrost ecosystem structure. The Cryosphere 11 (6), S. 2975 - 2996 (2017)
Kwon, M. J.; Beulig, F.; Ilie, I.; Wildner, M.; Küsel, K.; Merbold, L.; Mahecha, M. D.; Zimov, N.; Zimov, S. A.; Heimann, M.et al.; Schuur, E. A. G.; Kostka, J. E.; Kolle, O.; Hilke, I.; Göckede, M.: Plants, microorganisms, and soil temperatures contribute to a decrease in methane fluxes on a drained Arctic floodplain. Global Change Biology 23 (6), 13558, S. 2396 - 2412 (2017)
Kwon, M. J.; Heimann, M.; Kolle, O.; Luus, K.; Schuur, E. A. G.; Zimov, N.; Zimov, S. A.; Göckede, M.: Long-term drainage reduces CO2 uptake and increases CO2 emission on a Siberian floodplain due to shifts in vegetation community and soil thermal characteristics. Biogeosciences 13 (14), S. 4219 - 4235 (2016)
Kwon, M. J.: The effects of long-term drainage on processes governing CO2 and CH4 fluxes on an Arctic floodplain in Siberia. Dissertation, XII,92 S., Friedrich Schiller University Jena, Jena (2016)
Das Global Carbon Project zeigt, dass die fossilen CO2-Emissionen auch 2024 weiter ansteigen. Es fehlen Anzeichen für den schnellen und starken Rückgang der Emissionen, der nötig wäre, um die Auswirkungen des Klimawandels einzugrenzen.
Seit dem ersten Messflug im Jahr 1994 hat die europäische Forschungsinfrastruktur IAGOS eine Messtechnik für Linien-Flugzeuge entwickelt, die regelmäßig umfangreiche Klimadaten aus der Atmosphäre liefert.
Bei der Untersuchung des Klimawandels wird allgemein angenommen, dass die Gesamtmenge der Kohlenstoffemissionen die Erderwärmung bestimmt. Eine neue Studie legt jedoch nahe, dass nicht nur die Menge, sondern auch der Zeitpunkt dieser Emissionen das Ausmaß der Oberflächenerwärmung auf einer menschenbezogenen Zeitskala bestimmt.
Stickstoffdünger und Stickoxide aus fossilen Brennstoffen belasten die Luft und das Trinkwasser, führen zur Überdüngung von Gewässern und Landökosystemen, reduzieren die Artenvielfalt und schädigen die Ozonschicht. Was das Klima angeht, haben sie unter dem Strich aber eine kühlende Wirkung.
Die anthropogenen Emissionen von Lachgas (N2O), ein pro Molekül deutlich stärkeres Treibhausgas als Kohlenstoffdioxid oder Methan, stiegen zwischen 1980 und 2020 um etwa 40% an. Im Jahr 2020 erreichten die anthropogenen Emissionen in die Atmosphäre mehr als 10 Millionen Tonnen pro Jahr, so der neue Bericht „Global Nitrous Oxide Budget 2024“ des Global Carbon Project.
Eine kürzlich in Nature veröffentlichte Studie unter Beteiligung von Sönke Zaehle legt nahe, dass Eucalyptusbäume nicht von steigendem CO2 profitieren. Ein erhöhter CO2-Gehalt führt dazu, dass die Bodenmikroorganismen Phosphor stärker binden. Dieser Mineralstoff im Boden, der für das Wachstum der Bäume unerlässlich ist, steht somit weniger zur Verfügung.
Eine Tonne CO2 aus der Luft holen und so eine Tonne Emissionen ungeschehen machen? Haut nicht hin, sagt eine Studie. Und liefert vier Einwände mit Blick auf die Erdsysteme.
Der neue Bericht des Global Carbon Project zeigt: Die fossilen CO2-Emissionen werden 2023 ein Rekordhoch erreichen. Bleiben die Emissionen so hoch, wird das verbliebene Kohlenstoffbudget zur Einhaltung der 1,5°C-Grenze voraussichtlich in sieben Jahren aufgebraucht sein. Die Emissionen aus der Landnutzung nehmen zwar leicht ab, sind aber immer noch zu hoch, um durch nachwachsende Wälder und Aufforstung kompensiert werden zu können.
Das internationale Cabo-Verde-Atmosphären-Observatorium (CVAO) wird weiter ausgebaut: Der Präsident der Republik Cabo Verde José Maria Neves und Bundespräsident Frank-Walter Steinmeier legten am Donnerstag den Grundstein für ein neues Laborgebäude auf São Vicente, einer der Kapverdischen Inseln vor Afrika. Das Max-Planck-Institut für Biogeochemie war am Aufbau der Station beteiligt und führt seitdem am CVAO Langzeitmessungen u.a. der Treibhausgase Methan, Kohlendioxid und Lachgas durch.
Forscher der University of California und des Max-Planck-Instituts für Biogeochemie haben ein genaueres Modell des globalen Kohlenstoffkreislaufs entwickelt. Das Modell berücksichtigt besser, wie die Ökosysteme der Landoberfläche zu den atmosphärischen Konzentrationen des Treibhausgases Kohlendioxid beitragen.