Stoner, S.; Trumbore, S. E.; González-Pérez, J. A.; Schrumpf, M.; Sierra, C. A.; Hoyt, A. M.; Chadwick, O.; Doetterl, S.: Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis. Philosophical Transactions of the Royal Society of London - Series A: Mathematical Physical and Engineering Sciences 381 (2261), 20230139 (2023)
Stoner, S.; Schrumpf, M.; Hoyt, A. M.; Sierra, C. A.; Doetterl, S.; Galy, V.; Trumbore, S. E.: How well does ramped thermal oxidation quantify the age distribution of soil carbon? Assessing thermal stability of physically and chemically fractionated soil organic matter. Biogeosciences 20 (15), pp. 3151 - 3163 (2023)
Todd-Brown, K. E. O.; Abramoff, R. Z.; Beem-Miller, J.; Blair, H. K.; Earl, S.; Frederick, K. J.; Fuka, D. R.; Santamaria, M. G.; Harden, J. W.; Heckman, K.et al.; Heran, L. J.; Holmquist, J. R.; Hoyt, A. M.; Klinges, D. H.; LeBauer, D. S.; Malhotra, A.; McClelland, S. C.; Nave, L. E.; Rocci, K. S.; Schaeffer, S. M.; Stoner, S.; van Gestel, N.; von Fromm, S. F.; Younger, M. L.: Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential. Biogeosciences 19 (14), pp. 3505 - 3522 (2022)
Heckman, K.; Hicks Pries, C. E.; Lawrence, C. R.; Rasmussen, C.; Crow , S. E.; Hoyt, A. M.; von Fromm, S. F.; Shi, Z.; Stoner, S.; McGrath, C.et al.; Beem-Miller, J.; Berhe, A. A.; Blankinship, J. C.; Keiluweit, M.; Marín-Spiotta, E.; Monroe, J. G.; Plante, A. F.; Schimel, J.; Sierra, C.; Thompson, A.; Wagai, R.: Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence. Global Change Biology 28 (3), pp. 1178 - 1196 (2022)
Stoner, S.; Hoyt, A. M.; Trumbore, S. E.; Sierra, C.; Schrumpf, M.; Doetterl, S.; Baisden, W. T.; Schipper, L. A.: Soil organic matter turnover rates increase to match increased inputs in grazed grasslands. Biogeochemistry 156, pp. 145 - 160 (2021)
Lawrence, C. R.; Beem-Miller, J.; Hoyt, A. M.; Monroe, G.; Sierra, C. A.; Stoner, S.; Heckman, K.; Blankinship, J. C.; Crow, S. E.; McNicol, G.et al.; Trumbore, S. E.; Levine, P. A.; Vindušková, O.; Todd-Brown, K.; Rasmussen, C.; Pries, C. E. H.; Schädel, C.; McFarlane, K.; Doetterl, S.; Hatté, C.; He, Y.; Treat, C.; Harden, J. W.; Torn, M. S.; Estop-Aragonés, C.; Berhe, A. A.; Keiluweit, M.; Kuhnen, Á. D. R.; Marin-Spiotta, E.; Plante, A. F.; Thomson, A.; Shi, Z.; Schimel, J. P.; Vaughn, L. J. S.; von Fromm, S. F.; Wagai, R.: An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0. Earth System Science Data 12 (1), pp. 61 - 76 (2020)
Schädel, C.; Beem-Miller, J.; Azizi-Rad, M.; Crow, S. E.; Pries, C. H.; Ernakovich, J.; Hoyt, A. M.; Plante, A.; Stoner, S.; Treat, C. C.et al.; Sierra, C.: Decomposability of soil organic matter over time: the Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures. Earth System Science Data 12 (3), pp. 1511 - 1524 (2020)
Zethof, J. H. T.; Leue, M.; Vogel, C.; Stoner, S.; Kalbitz, K.: Identifying and quantifying geogenic organic carbon in soils – the case of graphite. Soil 5 (2), pp. 383 - 398 (2019)
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme climate events endanger groundwater quality and stability, when rain water evades natural purification processes in the soil. This was demonstrated in long-term groundwater analyses using new analytical methods.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.