Rzanny, M.; Bebber, A.; Wittich, H. C.; Fritz, A.; Boho, D.; Mäder, P.; Wäldchen, J.: More than rapid identification—Free plant identification apps can also be highly accurate. People and Nature 6 (6), pp. 2178 - 2181 (2024)
Wäldchen, J.; Wittich, H. C.; Rzanny, M.; Fritz, A.; Mäder, P.: Towards more effective identification keys: A study of people identifying plant species characters. People and Nature 4 (6), pp. 1603 - 1615 (2022)
Katal, N.; Rzanny, M.; Mäder, P.; Wäldchen, J.: Deep learning in plant phenological research: A systematic literature review. Frontiers in Plant Science 13, 805738 (2022)
Schmid, B.; Schmitz, M.; Rzanny, M.; Scherer-Lorenzen, M.; Mwangi, P. N.; Weisser, W. W.; Hector, A.; Schmid, R.; Flynn, D. F. B.: Removing subordinate species in a biodiversity experiment to mimic observational field studies. Grassland Research 1 (1), pp. 53 - 62 (2022)
Mahecha, M. D.; Rzanny, M.; Kraemer, G.; Mäder, P.; Seeland, M.; Wäldchen, J.: Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44 (8), pp. 1131 - 1142 (2021)
Mäder, P.; Boho, D.; Rzanny, M.; Seeland, M.; Wittich, H. C.; Deggelmann, A.; Wäldchen, J.: The Flora Incognita app – interactive plant species identfication. Methods in Ecology and Evolution 12 (7), pp. 1335 - 1342 (2021)
Rzanny, M.; Mäder, P.; Deggelmann, A.; Chen, M.; Wäldchen, J.: Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods 15, 77 (2019)
Hines, J.; Giling, D. P.; Rzanny, M.; Voigt, W.; Meyer, S. T.; Weisser, W. W.; Eisenhauer, N.; Ebeling, A.: A meta‐food web for invertebrate species collected in a European grassland. Ecology 100 (6), e02679 (2019)
Seeland, M.; Rzanny, M.; Boho, D.; Wäldchen, J.; Mäder, P.: Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20, 4 (2019)
Wittich, H. C.; Seeland, M.; Wäldchen, J.; Rzanny, M.; Mäder, P.: Recommending plant taxa for supporting on-site species identification. BMC Bioinformatics 19, 190 (2018)
Ebeling, A.; Rzanny, M.; Lange, M.; Eisenhauer, N.; Hertzog, L. R.; Meyer, S. T.; Weisser, W. W.: Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127 (2), pp. 208 - 219 (2018)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
Extreme precipitation should increase with warmer temperatures. Data from tropical regions show that this correlation is obscured by the cooling effect of clouds. When cloud effects are corrected, the increase in extreme precipitation with rising temperatures becomes apparent.
More frequent strong storms are destroying ever larger areas of the Amazon rainforest. Storm damage was mapped between 1985 and 2020. The total area of affected forests roughly quadrupled in the period studied.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
The Chinese Academy of Sciences (CAS) and the German National Academy of Sciences Leopoldina will hold a joint conference on the challenges of achieving carbon neutrality in Berlin on October 29-30, 2024.
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
A study by Leipzig University, the German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv) and the MPI for Biogeochemistry shows that gaps in the canopy of a mixed floodplain forest have a direct influence on the temperature and moisture in the forest soil, but only a minor effect on soil activity.