Rzanny, M.; Bebber, A.; Wittich, H. C.; Fritz, A.; Boho, D.; Mäder, P.; Wäldchen, J.: More than rapid identification—Free plant identification apps can also be highly accurate. People and Nature 6 (6), pp. 2178 - 2181 (2024)
Wäldchen, J.; Wittich, H. C.; Rzanny, M.; Fritz, A.; Mäder, P.: Towards more effective identification keys: A study of people identifying plant species characters. People and Nature 4 (6), pp. 1603 - 1615 (2022)
Katal, N.; Rzanny, M.; Mäder, P.; Wäldchen, J.: Deep learning in plant phenological research: A systematic literature review. Frontiers in Plant Science 13, 805738 (2022)
Schmid, B.; Schmitz, M.; Rzanny, M.; Scherer-Lorenzen, M.; Mwangi, P. N.; Weisser, W. W.; Hector, A.; Schmid, R.; Flynn, D. F. B.: Removing subordinate species in a biodiversity experiment to mimic observational field studies. Grassland Research 1 (1), pp. 53 - 62 (2022)
Mahecha, M. D.; Rzanny, M.; Kraemer, G.; Mäder, P.; Seeland, M.; Wäldchen, J.: Crowd-sourced plant occurrence data provide a reliable description of macroecological gradients. Ecography 44 (8), pp. 1131 - 1142 (2021)
Mäder, P.; Boho, D.; Rzanny, M.; Seeland, M.; Wittich, H. C.; Deggelmann, A.; Wäldchen, J.: The Flora Incognita app – interactive plant species identfication. Methods in Ecology and Evolution 12 (7), pp. 1335 - 1342 (2021)
Rzanny, M.; Mäder, P.; Deggelmann, A.; Chen, M.; Wäldchen, J.: Flowers, leaves or both? How to obtain suitable images for automated plant identification. Plant Methods 15, 77 (2019)
Hines, J.; Giling, D. P.; Rzanny, M.; Voigt, W.; Meyer, S. T.; Weisser, W. W.; Eisenhauer, N.; Ebeling, A.: A meta‐food web for invertebrate species collected in a European grassland. Ecology 100 (6), e02679 (2019)
Seeland, M.; Rzanny, M.; Boho, D.; Wäldchen, J.; Mäder, P.: Image-based classification of plant genus and family for trained and untrained plant species. BMC Bioinformatics 20, 4 (2019)
Wittich, H. C.; Seeland, M.; Wäldchen, J.; Rzanny, M.; Mäder, P.: Recommending plant taxa for supporting on-site species identification. BMC Bioinformatics 19, 190 (2018)
Ebeling, A.; Rzanny, M.; Lange, M.; Eisenhauer, N.; Hertzog, L. R.; Meyer, S. T.; Weisser, W. W.: Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127 (2), pp. 208 - 219 (2018)
Thanks to FLUXCOM-X, the next generation of data driven, AI-based earth system models, scientists can now see the Earth’s metabolism at unprecedented detail – assessed everywhere on land and every hour of the day.
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
A recent study by scientists from the Max Planck Institute for Biogeochemistry and the University of Leipzig suggests that increasing droughts in the tropics and changing carbon cycle responses due to climate change are not primarily responsible for the strong tropical response to rising temperatures. Instead, a few particularly strong El Niño events could be the cause.
EU funds the international research project AI4PEX to further improve Earth system models and thus scientific predictions of climate change. Participating scientists from 9 countries met at the end of May 2024 to launch the project at the MPI for Biogeochemistry in Jena, which is leading the project.
From the Greek philosopher Aristotle to Charles Darwin to the present day, scientists have dealt with this fundamental question of biology. Contrary to public perception, however, it is still largely unresolved. Scientists have now presented a new approach for the identification and delimitation of species using artificial intelligence (AI).
The 73rd Lindau Nobel Laureate Meeting was dedicated to physics and was held from June 30 to July 5, 2024. It brought together around 40 Nobel Laureates and 635 young scientists from more than 90 nations.
A research team led by the German Centre for Integrative Biodiversity Research (iDiv) and Leipzig University has developed an algorithm that analyses observational data from the Flora Incognita app. The novel can be used to derive ecological patterns that could provide valuable information about the effects of climate change on plants.
Tropical forests are continuously being fragmented and damaged by human influences. Using remote sensing data and cutting-edge data analysis methods, researchers can now show for the first time that the impact of this damage is greater than previously estimated.
The new research project "PollenNet" aims to use artificial intelligence to accurately predict the spread of pollen. In order to improve allergy prevention, experts are bringing together the latest interdisciplinary findings from a wide range of fields.
If rivers overflow their banks, the consequences can be devastating. Using methods of explainable machine learning, researchers at the Helmholtz Centre for Environmental Research (UFZ) have shown that floods are more extreme when several factors are involved in their development.
Europe is the fastest warming continent in the world. According to the European Environment Agency’s assessment, many of these risks have already reached critical levels and could become catastrophic without urgent and decisive action.