Churkina, G.; Brown, D. G.; Keoleian, G.: Carbon stored in human settlements: the conterminous United States. Global Change Biology 16 (1), pp. 135 - 143 (2010)
Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Heimann, M.; Jones, C.: Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences 7 (9), pp. 2749 - 2764 (2010)
Luyssaert, S.; Ciais, P.; Piao, S. L.; Schulze, E.-D.; Jung, M.; Zaehle, S.; Schelhaas, M. J.; Reichstein, M.; Churkina, G.; Papale, D.et al.; Abril, G.; Beer, C.; Grace, J.; Loustau, D.; Matteucci, G.; Magnani, F.; Nabuurs, G. J.; Verbeeck, H.; Sulkava, M.; Van Der Werf, G. R.; Janssens, I.; Team, C. S.: The European carbon balance. Part 3: forests. Global Change Biology 16 (5), pp. 1429 - 1450 (2010)
Churkina, G.; Brovkin, V.; Von Bloh, W.; Trusilova, K.; Jung, M.; Dentener, F.: Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming. Global Biogeochemical Cycles 23, p. GB4027 (2009)
Trusilova, K.; Jung, M.; Churkina, G.: On climate impacts of a potential expansion of urban land in Europe. Journal of Applied Meteorology and Climatology 48, pp. 1971 - 1980 (2009)
Hakkenberg, R.; Churkina, G.; Rodeghiero, M.; Börner, A.; Steinhof, A.; Cescatti, A.: Temperature sensitivity of the turnover times of soil organic matter in forests. Ecological Applications 18 (1), pp. 119 - 131 (2008)
Richardson, A. D.; Mahecha, M. D.; Falge, E.; Kattge, J.; Moffat, A. M.; Papale, D.; Reichstein, M.; Stauch, V. J.; Braswell, B. H.; Churkina, G.et al.; Kruijt, B.; Hollinger, D. Y.: Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals. Agricultural and Forest Meteorology 148 (1), pp. 38 - 50 (2008)
Trusilova, K.; Churkina, G.: The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution. Biogeosciences 5 (6), pp. 1505 - 1515 (2008)
Trusilova, K.; Jung, M.; Churkina, G.; Karstens, U.; Heimann, M.; Claussen, M.: Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5). Journal of Applied Meteorology and Climatology 47 (5), pp. 1442 - 1455 (2008)
Jung, M.; Le Maire, G.; Zaehle, S.; Luyssaert, S.; Vetter, M.; Churkina, G.; Ciais, P.; Viovy, N.; Reichstein, M.: Assessing the ability of three land ecosystem models to simulate gross carbon uptake of forests from boreal to Mediterranean climate in Europe. Biogeosciences 4 (4), pp. 647 - 656 (2007)
Jung, M.; Vetter, M.; Herold, M.; Churkina, G.; Reichstein, M.; Zaehle, S.; Ciais, P.; Viovy, N.; Bondeau, A.; Chen, Y.et al.; Trusilova, K.; Feser, F.; Heimann, M.: Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global Biogeochemical Cycles 21 (4), p. Gb4021 (2007)
Moffat, A. M.; Papale, D.; Reichstein, M.; Hollinger, D. Y.; Richardson, A. D.; Barr, A. G.; Beckstein, C.; Braswell, B. H.; Churkina, G.; Desai, A. R.et al.; Falge, E.; Gove, J. H.; Heimann, M.; Hui, D. F.; Jarvis, A. J.; Kattge, J.; Noormets, A.; Stauch, V. J.: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147 (3-4), pp. 209 - 232 (2007)
Jung, M.; Henkel, K.; Herold, M.; Churkina, G.: Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment 101 (4), pp. 534 - 553 (2006)
When it comes to studying climate change, we generally assume that the total amount of carbon emissions determines how much the planet will warm. A new study suggests that not only the amount, but also the timing of those emissions controls the amount of surface warming that occurs on human time-scale.
Anthropogenic emissions of nitrous oxide (N2O), a much more potent greenhouse gas per molecule than carbon dioxide or methane, increased by around 40% between 1980 and 2020. In 2020, anthropogenic emissions into the atmosphere reached more than 10 million tons per year, according to the new report "Global Nitrous Oxide Budget 2024" by the Global Carbon Project.
A recent study published in Nature, co-authored by Sönke Zaehle, suggests that eucalyptus trees do not benefit from rising CO2. Increased CO2 levels cause soil microorganisms to hold on to their phosphorus. This soil mineral, which is essential for tree growth, is therefore less available.
Removing a tonne of CO2 from the air and thus undoing a tonne of emissions? Doesn't quite work, says a study. And provides four objections in view of Earth systems.
The international Cabo Verde Atmospheric Observatory (CVAO) is being further expanded: The President of the Republic of Cabo Verde José Maria Neves and German President Frank-Walter Steinmeier laid the foundation stone on Thursday for a new laboratory building on São Vicente, one of the Cape Verde Islands off Africa. The Max Planck Institute for Biogeochemistry was involved in the construction of the station and has since been conducting long-term measurements of the greenhouse gases methane, carbon dioxide and nitrous oxide, among others, at the CVAO.
Within the framework of IAGOS, several projects for the realization of IAGOS infrastructure were carried out at the MPI-BGC under the leadership of Dr. Christoph Gerbig starting in 2005. In particular, the team developed the system for the simultaneous detection of the greenhouse gases carbon dioxide (CO2), methane (CH4), carbon monoxide (CO) and water for continuous application on airliners.
The Global Carbon Project presents its new report on global greenhouse gas budget trends. For the current year, CO2 emissions are projected to be slightly higher than before the pandemic, only slightly below the 2019 peak. If emissions remain at this high level, stabilization of the climate and achievement of the Paris climate targets is questionable.
The sources and sinks of greenhouse gases in Germany are to be better monitored in future. This is the goal of the Integrated Greenhouse Gas Monitoring System (ITMS) for Germany, which was officially launched with a three-day meeting from 18 to 20 October 2022 at the Max Planck Institute for Biogeochemistry in Jena. The ITMS is funded by the German Federal Ministry of Education and Research (BMBF) and aims to provide the German government and the public with reliable information on the state and development of greenhouse gas fluxes.
In August and September 2022, the HALO research aircraft is on mission over Canada. Also on board is Dr. habil. Christoph Gerbig, group leader at the MPI for Biogeochemistry. Together with researchers from DLR, the University of Bremen and LMU Munich, the scientists want to find out more about the natural and anthropogenic sources and sinks of methane and carbon dioxide. The CoMet 2.0 Arctic mission will also test new instruments for measuring greenhouse gases.
Scientists have succeeded in detecting changes in carbon dioxide emissions from fossil fuels much faster than before. Using a new method, they combined atmospheric measurements of carbon dioxide (CO2) and oxygen (O2). This allowed them to distinguish between natural CO2 emissions from the land surface and those from fossil fuels.
After falling significantly on average globally in 2020, fossil carbon dioxide emissions this year are approaching pre-Corona pandemic levels again. This is the conclusion of the international Global Carbon Project, published in a preliminary report.
The increasing amount of greenhouse gases in the atmosphere is leading to an alarming warming of our climate. The resulting changes are unprecedented and difficult to predict due to the complexity of the Earth system. This information is of paramount importance for decisions on pathways to climate neutrality. European ICOS research provides this information, as described in a recent article.