Pitelka, L. F.; Gardner, R. H.; Ash, J.; Berry, S.; Gitay, H.; Noble, I. R.; Saunders, A.; Bradshaw, R. H. W.; Brubaker, L.; Clark, J. S.et al.; Davis, M. B.; Sugita, S.; Dyer, J. M.; Hengeveld, R.; Hope, G.; Huntley, B.; King, G. A.; Lavorel, S.; Mack, R. N.; Malanson, G. P.; Mcglone, M.; Prentice, I. C.; Rejmanek, M.: Plant migration and climate change. American Scientist 85 (5), pp. 464 - 473 (1997)
Schimel, D. S.; Emanuel, W.; Rizzo, B.; Smith, T.; Woodward, F. I.; Fisher, H.; Kittel, T. G. F.; Mckeown, R.; Painter, T.; Rosenbloom, N.et al.; Ojima, D. S.; Parton, W. J.; Kicklighter, D. W.; Mcguire, A. D.; Melillo, J. M.; Pan, Y.; Haxeltine, A.; Prentice, I. C.; Sitch, S.; Hibbard, K.; Nemani, R.; Pierce, L.; Running, S.; Borchers, J.; Chaney, J.; Neilson, R.; Braswell, B. H.: Continental scale variability in ecosystem processes: Models, data, and the role of disturbance. Ecological Monographs 67 (2), pp. 251 - 271 (1997)
Texier, D.; De Noblet, N.; Harrison, S. P.; Haxeltine, A.; Jolly, D.; Joussaume, S.; Laarif, F.; Prentice, I. C.; Tarasov, P.: Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years BP and comparison with palaeodata for northern Eurasia and northern Africa. Climate Dynamics 13 (12), pp. 865 - 882 (1997)
Haxeltine, A.; Prentice, I. C.; Creswell, I. D.: A coupled carbon and water flux model to predict vegetation structure. Journal of Vegetation Science 7 (5), pp. 651 - 666 (1996)
Joos, F.; Prentice, I. C.: A Paleo-perspective on changes in atmospheric CO2 and climate. In: The global carbon cycle, Vol. 62, pp. 165 - 186 (Eds. Field, C. B.; Raupach, M. R.). Island Press, Washington (2004)
Spessa, A.; Mcbeth, B.; Thonicke, K.; Prentice, I. C.: Modelling the relationship between fire frequency, rainfall and vegetation in the Kimberleys region Australia, using a fire model coupled to a DGVM. In: Proceedings of the 3rd International Wildland Fire Conference, 4-6 Oct. 2003, Sydney (Eds. Goldammer, J.; Viegas, D.) (2003)
Guiot, J.; Prentice, I. C.; Peng, C.; Jolly, D.; Laarif, F.; Smith, B.: Reconstruction and modelling past changes in terrestrial primary production. In: Terrestrial global productivity, pp. 479 - 498 (Eds. Roy, J.; Saugier, B.; Mooney, H. A.). Academic Press, San Diego (2001)
Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 2001 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, pp. 427 - 435. Vandenhoeck & Ruprecht, Göttingen (2001)
Prentice, I. C.: Interactions of climate change and the terrestrial biosphere. In: Geosphere-biosphere interactions and climate, pp. 176 - 198 (Eds. Bengtsson, L.; Hammer, C. U.). Pontifical Academy of Sciences, Cambridge (2001)
Prentice, I. C.; Farquhar, G. D.; Fasham, M. J. R.; Goulden, M. L.; Heimann, M.; Jaramillo, V. J.; Kheshgi, H. S.; Le Quéré, C.; Scholes, R. J.; Wallace, D. W. R.: The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: the scientific basis, pp. 183 - 237 (Eds. Houghton, J. T.; Ding, Y.; Griggs, D. J.; Noguer, M.; Van Der Linden, P. J. et al.). Cambridge University Press, Cambridge (2001)
Prentice, I. C.; Raynaud, D.: Palaeobiogeochemistry. In: Global biogeochemical cycles in the climate system, pp. 87 - 94 (Eds. Schulze, E.-D.; Harrison, S. P.; Heimann, M.; Holland, E. A.; Lloyd, J. et al.). Academic Press, San Diego (2001)
Wallace, D. W. R.; Prentice, I. C.; Schimel, D.: The global carbon cycle. In: Contributions to global change research, pp. 22 - 29 (Ed. Heinen, D.). German National Committee on Global Change Research, Bonn (2001)
Francois, L.; Kaplan, J. O.; Otto, D.; Roelandt, C.; Harrison, S. P.; Prentice, I. C.; Warnant, P.; Ramstein, G.: Comparison of vegetation distributions and terrestrial carbon budgets reconstructed for the last glacial maximum with several biosphere models. In: Paleoclimate Modelling Intercomparison Project (PMIP). Proceedings of the third PMIP workshop, La Huardière, Canada, 4-8 October 1999, pp. 141 - 145 (Eds. De Vernal, A.; Braconnot, P.; Joussaume, S.; Taylor, K.) (2000)
Schulze, E.-D.; Prentice, I. C.: Max-Planck-Institut für Biogeochemie. In: Jahrbuch 2000 der Max-Planck-Gesellschaft zur Förderung der Wissenschaften, pp. 457 - 464. Vandenhoeck & Ruprecht, Göttingen (2000)
Yu, G.; Sun, X.; Qin, B.; Song, C.; Li, H.; Prentice, I. C.; Harrison, S. P.: Pollend-based reconstruction of vegetation patterns of China in Mid-Holocene. In: Proceedings for the 60th Anniversary of the Founding of Nanjing Institute of Geography and Limnology, pp. 369 - 375 (Ed. Nanjing Institute of Geography & Limnology, C.). Chinese Academic of Sciences (III) (2000)
David Hafezi Rachti was awarded twice: for his EGU poster with this year’s “Outstanding Student and PhD candidate Presentation” (OSPP) and for his Bachelor thesis, he received the 1st prize of the “Young Climate Scientist Award 2024”.
The Global Carbon Project shows that fossil CO2 emissions will continue to rise in 2024. There is no sign of the rapid and substantial decline in emissions that would be needed to limit the impact of climate change
Experts from science, journalism, local authorities and non-governmental organizations consider a change of course in communication on climate issues to be urgently needed. The appeal was published on the occasion of the K3 Congress on Climate Communication with around 400 participants in Graz.
The Chapter of the Order has elected the writer, philosopher and filmmaker Alexander Kluge and the mathematician Gerd Faltings as domestic members of the Order and the geologist Susan Trumbore and the literary scholar Stephen Greenblatt as foreign members.
Thuringia is severely affected by climate change, which is already reflected in extreme weather events and rising temperatures. The Climate Council is calling for the consistent implementation and tightening of climate policy targets in order to achieve climate neutrality by 2045. The coming legislative period is crucial for the future of Thuringia.
Nitrogen fertilizers and nitrogen oxides from fossil fuels pollute the air and drinking water, lead to the over-fertilization of water bodies and terrestrial ecosystems, reduce biodiversity and damage the ozone layer. On balance, however, they have a cooling effect on the climate.
On June 24, Prof. Dr. Henrik Hartmann, head of the Julius Kühn Institute for Forest Protection and former group leader at the Max Planck Institute for Biogeochemistry, received an important award for his scientific achievements in the field of forestry. Our warmest congratulations!
Anthropogenic emissions of nitrous oxide (N2O), a much more potent greenhouse gas per molecule than carbon dioxide or methane, increased by around 40% between 1980 and 2020. In 2020, anthropogenic emissions into the atmosphere reached more than 10 million tons per year, according to the new report "Global Nitrous Oxide Budget 2024" by the Global Carbon Project.
A recent study published in Nature, co-authored by Sönke Zaehle, suggests that eucalyptus trees do not benefit from rising CO2. Increased CO2 levels cause soil microorganisms to hold on to their phosphorus. This soil mineral, which is essential for tree growth, is therefore less available.
At the General Meeting on April 26, 2024, the new Board of Directors was elected from among the DKK members in accordance with the Articles of Association. All five candidates were elected unanimously, including Markus Reichstein. The new Board has a younger team and its range of topics has also expanded.